Open Book/Notes/Internet (90 minutes including scan and email return).

All work and related steps must be explicitly shown for full credit.

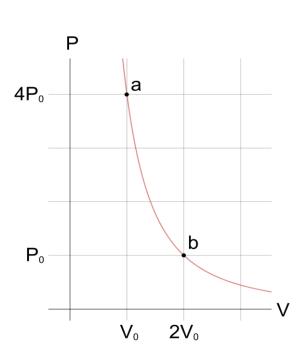
[10] 1. Groups. A group $G=\{a,b,c,d,e\}$ with identity e . For any $a\in G$ and $b\in G$, the following is true: $aba^{-1}b^{-1}=e$. Prove that the group is abelian.

[25] 2. Integral. Use a derivative trick to evaluate $\int_0^\infty x e^{-ax} \sin(kx) \ dx$, where a>0 ,

starting from the integral result $\int_0^\infty e^{-ax} \cos(kx) \ dx = \frac{a}{a^2 + k^2}$. For 20 points max,

you may instead evaluate $\int_0^\infty x e^{-ax} \cos(kx) \, dx$. Commit to one for official credit.

[25] 3. Waves. Show that $\psi(x,t)=Ae^{-i(ax+bt)}$ satisfies the wave equation with an associated auxiliary equation that relates a, b, and the velocity v. What is this equation, in simplest form, that relates a, b, and v?


[10] 4. E&M. If the second Maxwell equation was modified to be $\nabla \cdot \vec{B} = f(x, y, z) \neq 0$, explain in a sentence or two the new physics of this novel situation.

[30] 5. Gas and Work. A gas expands from point a to point b (see figure), where the

pressure varies as $P = \frac{k}{V^2}$ during the

expansion (k is a constant). What is the work done by the gas if the gas expands from $V_1=V_0$ to $V_2=2V_0$ as shown in the figure, i.e., from point a to point b?

Give your answer in terms of $\,P_0\,$ and $\,V_0\,$, where $\,k\,$ does not appear in your answer.

