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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter Y Notes. Feynman's Derivation of the Schrödinger Equation 
 
Y1. The Path Integral Approach to Quantum Mechanics. 

http://talklikeaphysicist.com/2009/path-integral-formulation-of-your-life/ 
 

Historical Seeds for Feynman's Analysis 
 
1. Hero (or Heron) of Alexandra (ca. 
year 50) - light travels from one point 
to another taking the shortest 
possible time 
 
Left Photo: Scattering Dust in Path of 
Laser Beam. 
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2. Pierre de Fermat (1601-1665) - light travels the path taking 
the least time (more than one medium included) 
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3. The Bernoulli Brothers and the Brachistocrhone Problem (1696). 

The Swiss mathematician Johann 
Bernoulli posed the famous 
brachistochrone problem in 
1696. It requires one to find the 
curve that gives the shortest 
(brachistos) time (chronos) of 
travel for a particle sliding under 
the influence of gravity (no 
friction). No one solved it in six 
months. 

Leibniz requested Bernoulli to 
extend the time so that foreign 
mathematicians would be sure to 
hear about the challenge. 

Bernoulli and Leibniz knew that the problem could not be solved without calculus. They 
were specifically after Newton since the Newton-Leibniz controversy made ambiguous 
the true discoverer of calculus. Word about the problem finally got to Newton on 
January 29, 1697. Newton's biographer Conduitt reports that Newton solved the 
problem in one evening after a hard day's work at the mint:  

"... in the midst of the hurry of the great recoinage, did not come home till four (in the 
afternoon) from the Tower very much tired, but did not sleep till he had solved it, which 
was by four in the morning."  

The brachistochrone problem played an important historical role in the development of 
the "calculus of variations." Johann Bernoulli produced an elegant solution by framing 
the question in terms of optics, an effective index of refraction, and Fermat's principle. 
L'Hospital, Leibniz, and Johann's brother Jacob also produced solutions to the 
brachistochrone problem. 
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4. Joseph-Louis Lagrange (1736-1813). Lagrange made 
important contributions to the subject called the "calculus of 
variations" at the young age of 19. The following are general 
equations independent of physics. 
 

 
 
 
 

 
The difference between the kinetic energy and potential 

energy is named the Lagrangian in honor of the mathematician. 
 
5. Pierre Louis Moreau de Maupertuis (1698-1759). 
Maupertuis was the mathematician who gave us the first 
formulation of the principle of least action in 1746.  

 

S Ldt=   

 

21
( )

2
L mv V x= −

 

 
The L stands for Lagrangian. 
 
6. Euler, Lagrange, and Hamilton did further work on the least-action principle of 
Maupertuis. Thus we hear about the Euler-Lagrange equations or Hamilton's principle of 
least action. 
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Y2. Huygen's Principle. 
 

Christiaan Huygens (1629-1695). 
Painting by Bernard Vaillant 
Museum Hofwijck, Voorburg, The Netherlands 
 
Huygens' Principle says that you can replace a 
wave front with "baby waves" to get the wave of 
the future. 
 
First consider a basic one-dimensional wave 
written as an exponential. You can always take 
the real part. 
 

( )i kx te  −
 

 
In vacuum, we have 
 

0c f=  

 
When the light enters a medium with a lower velocity 
 

v f= , 

 
the wavelength shortens and you get refraction. The frequency stays the same. 

Therefore, you have a new 
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The phase for the spatial part is then given in the exponent 

0 ( )ik n s ds
e 

 

 
Now we go back to Huygen's Principle. 
 
Huygens' Principle says that you can replace a wave front with "baby waves" to get 
the wave of the future.  
 

Image Courtesy Arne Nordmann, 
Wikipedia 
 
First note how the wavelength 
shortens as the wave enters the 
lower medium where the speed is 
slower. Note the bend, i.e., the 
refraction. Also note that the 
number of crests passing per 
second is the same - the same 
frequency. Otherwise you would 
be creating extra wave crests. 

 
The wavelets shown here at the 
boundary, are each expanding on 
its own, getting you the future 

crest. 
 

We write this among friends in a simplified way as follows. 
 

( , ) ( , ') ( ', ) 'x t G x x x t dx  + =   

 
The G function is your basic point response, i.e., an emerging wavelet at each point. 
You add all these up and get a wave a little later and so on. The basic point response is 
related to our 

0 ( )ik n s ds
G e 

. 

 

You evaluate G  over the short time interval  . 
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Y3. Phase in Quantum Mechanics. Phase in quantum mechanics is given by 

  in the exponential of a wave function. An overall phase does not affect probability. 

ie   

Consider the electron beam going through the double slit. The relative phase is given by 
 

kd pd
kd = = =

 using de Broglie's relation p k= , i.e., 

h
p


=

. 

Now we consider the action S Ldt=   for each path and subtract them. 

 
The time for the path from the slits to the screen takes place during the same time 
interval t. 
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Remember 

pd
 =

 from above? Therefore, 

S



 =

and 

S
 =

. 
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Y4. Dirac's Analogy. Dirac published an observation in 1933 that there is an 

analogy between the phase in optics and the phase in quantum mechanics. 
 

 
Note that both S and h have units of action, i.e., energy * time. Therefore, S/  is 
dimensionless. In the case of optics, the wave number ko (in vacuum) does the trick to 
obtain a dimensionless quantity for the exponent. 

Feynman was at the 
Nassau tavern, (left, 
postcard image), a year 
before he received his 
Ph.D. from Princeton, 
under thesis advisor 
Wheeler (Bohr's student). 
Feynman tells the story. 

"... but when I was 
struggling with this 
problem, I went to a beer 
party in the Nassau 
Tavern in Princeton. 
There was a gentleman, 
newly arrived from 

Europe (Herbert Jehle) who came and sat next to me. Europeans are much more 
serious than we are in America because they think that a good place to discuss 
intellectual matters is a beer party. So, he sat by me and asked, 'What are you doing' 
and so on, and I said, 'I'm drinking beer.' Then I realized that he wanted to know what 
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work I was doing and I told him I was struggling with this problem, and I simply turned to 
him and said, 'Listen, do you know any way of doing quantum mechanics, starting with 
action - where the action integral comes into the quantum mechanics?' 'No,' he said, 
'but Dirac has a paper in which the Lagrangian, at least, comes into quantum 
mechanics. I will show it to you tomorrow.'  

"Next day we went to the Princeton Library, they have little rooms on the side to discuss 
things, and he showed me this paper. What Dirac said was the following: There is in 
quantum mechanics a very important quantity which carries the wave function from one 
time to another, ... " Feynman, Nobel Lecture, December 11, 1965. 

Herbert Jehle (1907-1983) 
Courtesy The George Washington University 
Washington, DC 
 
"Professor Jehle showed me this, I read it, he 
explained it to me, and I said, 'What does he mean, 
they are analogous; what does that mean, analogous? 
What is the use of that?' 
 
"He said, 'You Americans! You always want to find a 
use for everything!' 
 
"I said, that I thought that Dirac must mean that they 
were equal. 'No,' he explained, 'he doesn't mean they 
are equal.' 'Well,' I said, 'Let's see what happens if we 
make them equal.'" 

 
So Feynman takes Dirac's analogy as more than an analogy and writes 
 

( , ) ( , ') ( ', ) 'x t G x x x t dx  + =   

 
with 

 

/iSG e=      and     

t

t
S Ldt

+

=   over the time interval  . 

 

Taking Dirac literally, Feynman sets 
/iSG e=  and writes the above Green's 

function type equation. In our next section we will see what Feynman found. 
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Y5. Feynman's Derivation of the Schrödinger Equation.  
 
Richard Feynman (1918-1988)  

"'Well,' I said, 'Let's see what happens if we make them 
equal.'" Feynman, Nobel Lecture, 1965. Thus Feynman 
wanted to see what would happen if he took the following 
to be true.  

( , ) ( , ') ( ', ) 'x t G x x x t dx  + =   

 

/iSG e=         

t

t
S Ldt

+

=   

From the Huygens' principle of optics, one arrives at the new wave front at time 

t + from wavelets emanating at an earlier time t . Dirac's analogy with quantum 

mechanics suggests a wild idea. Since the wave function represents a probability 
distribution, the integral can be interpreted as summing over all the possible paths from 

time t  to time t +  to arrive at x . The direct paths are shown below with the 

complex value of the wave function at each point represented by an arrow. Remember 
that a complex number can be represented as a modulus and direction, i.e., a phasor.  

Courtesy Thomas A. Moore 

One sums over the different paths starting from any x' and arriving at x within the same 
time frame. The contributions from the various paths are weighted by the exponential 
factor which carries the action for each path. In the classical limit, all the many crazy 
paths have to cancel, i.e., interfere destructively, leaving the one classical path.  

Feynman considered a small dt since he knew that the principle of least action is true 
no matter what the time interval is. This is the easier case to consider. 
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Reference: David Derbes, "Feynman's Derivation of the Schrödinger Equation," 
American Journal of Physics 64 (7), July 1996. 
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Since   is very small, we can do a Taylor series expansion for the second factor. 
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( , ) ( , ') ( ', ) 'x t G x x x t dx  + =   
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Since   is extremely small, then 
1


 is very large. This mean rapid oscillations due 

the exponent since Euler's relation indicates sines and cosines. This will give very thin 
positive and negative slices that will tend to cancel out. 

Using Zona Land's Graphics Calculator 

Check out the integration of sin(10 )x x . See how 

the rapid oscillations give plus and minus areas 
that are roughly equal in magnitude. 

Feynman reasons that only for very small x-x' do 
things matter. That's where your get something for 
your integration. 

So Feynman defines a new variable. We will call it 

 : 'x x = −    and   'd dx = −  

The limits of integration get flipped and a minus sign is brought in with the differential. 
We flip back the integration and take the minus sign away. Then, our original 
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with 'x x − = , 'x x = − , and ' ( ) 2x x x x x + = + − = − , brings us to 

2
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    
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 
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As we continue, you can see why Feynman is called a "magician" when it comes to 

theoretical physics. Continuing, since things matter only when   is small, we expand 

the wave function in the integrand. 
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Similarly,   is small, so we expand the wave function on the left side in terms of time.. 
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Now Feynman realized that his first guess cannot be true. He recognized that 
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since to zeroth order 
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Feynman evaluates the integral using 

2axe dx
a


−

−
=  and doesn't care that 

there is an imaginary number in the exponent and he even has no minus sign. He gets 
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So Feynman concludes 
/iSG e . So the next best guess is proportional. 
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/iSG Ae=      with     2

m
A
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With this modification, 
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The potential can be further simplified by expanding to first order in  , 
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But when the   is included, 
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since the   product of two small quantities can be neglected. 
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Now we go back to insert 
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There are three integrals to do. 
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Summary: 
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For the first integral, 
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The second integral is zero since we have an even function multiplied by an odd one. 
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The third integral is 
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Feynman was fond of doing integrals with the derivative trick. 
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The Schrödinger equation gives the evolution of the state! 
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"So, I turned to Professor Jehle, not really understanding, and said, 'Well, you see 
Professor Dirac meant that they were proportional.' 

Richard Feynman (1918-1988)                                            Herbert Jehle (1907-1983) 

Professor Jehle's eyes 
were bugging out - he had 
taken out a little notebook 
and was rapidly copying it 
down from the 
blackboard, and said, 'No, 
no, this is an important 
discovery. You Americans 
are always trying to find 
out how something can 
be used. That's a good 
way to discover things!' 

So, I thought I was finding out what Dirac meant, but, as 
a matter of fact, had made the discovery that what Dirac 
thought was analogous, was, in fact, equal. I had then, at least, the connection between 
the Lagrangian and quantum mechanics, but still with wave functions and infinitesimal 
times." Feynman, Nobel Lecture, 1965 

Dirac and Feynman at a 
Relativity Conference in 
Warsaw, Poland (July 1962). 
 
Feynman and Dirac were at a 
bicentennial celebration in the 
Fall of 1946. Feynman wanted 
to know what Dirac had meant 
by "analogous" in that historical 
1933 paper. 
 
"Did you know that they were 
proportional?" asked Feynman.  
 
"Are they?" Dirac inquired.  
 
"Yes," said Feynman.  
 
"Oh, that's interesting," was 
Dirac's final comment.  
 


