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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter W Notes. The Principle of Least Action 
 
W1. Gravity, Time, and Lagrangians. 

 
Reference: Elisha Huggins, "Gravity, Time, and Lagrangians," The Physics Teacher 48, 
pp. 512-514 (November 2010). 
 
The Pound-Rebka experiment (publication in 1960) measured the frequency shift in light 
as light traveled down a seven-story shaft. If you drop a ball through a height z, that ball 
gains kinetic energy by way of the work done by the force of gravity. 
 

0 0 0

z z z

W Fdz mgdz mg dz mgz= = = =    

 
This work is translated into kinetic energy. Remember when we discussed work earlier 

in our course? Now we use 

dv
F ma m

dt
= =

. 

 

2

0 0 0 0

1

2

z z z vdv dv dz dv
W m dz m dz m v dz m vdv mv

dt dz dt dz
= = = = =     

 
Equating these we have 

21

2
W mgz mv= =

 

 
Near the Earth the gravitational field can be taken to be constant. The potential energy 
is defined as 
 

U mgz= , where 0z =  is at the Earth's surface. 

 
Then, if you fall drop a stone from a building and it falls to the ground, you get this 
energy translated into kinetic energy when frictional forces are neglected. For any given 
height, the total energy is the sum of the kinetic energy and potential energy. 
 

21

2
E mv mgz= +
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Comparing two different heights during a fall, you have 
 

2 2

1 1 2 2

1 1

2 2
mv mgz mv mgz+ = +

 

 

If you drop a stone from rest at height 1z z= , then 1 0v = . If you let it fall to the 

ground 2( 0)z =  where the final velocity is 2v v= , you get the earlier result 

 

21
0 0

2
mgz mv+ = +

 

 
We are going to replace the kinetic energy with the energy of a photon. For a photon 

 , the energy is given by E hf = . The "falling" photon of course cannot speed up. 

Instead, the energy gained results in a higher frequency. So start by stating the 
conservation of energy for the photon that "falls" to the ground. 
 

0top bottomhf mgz hf+ = +  

 

Now use 
2E mc=  to substitute for the mass 2 2

top top

top

E hf
m

c c
= =

. 

 

2

top

top bottom

hf
hf gz hf

c
+ =

 

Let's solve for the bottom: 2

top

bottom top

hf
hf hf gz

c
= +

 

 

We bring the tophf  out to the left next. 

 

2
(1 )bottom top

gz
hf hf

c
= +

          2
(1 )bottom top

gz
f f

c
= +
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2
(1 )bottom top

gz
f f

c
= +

 

We now compare the periods. Remember 

1
T

f
=

. Also, note that 2
1

gz

c . 

Comparing the periods, 

1

2
(1 )bottom top

gz
T T

c

−= +
. 

 
Remember your Taylor expansion for 1 added to a small number from our first class 

months ago? It is (1 ) 1n n +  + . Here we have 2

gz

c
 =

 and 1n = − . Then 

2
(1 )bottom top

gz
T T

c
= −

        and        2
(1 )top bottom

gz
T T

c
= +

. 

A nice quick rule to remember is this one: 

1
1

1



 −

+  for 1 . 

 
Our top clock runs faster. 

2
(1 )top bottom

gz
T T

c
 =  +

 

During one second of bottom time, 1bottomT = , the top clock advances an extra 

amount:  2extra

gz
T

c
 =

.  Let's remember this rule as follows: 

The gain per second by a clock at height z  is 2

gz
T

c
 =

. 

 
We are shortly going to consider time dilation in special relativity. So as not to confuse 
that time effect with this one, we will label the clock-height effect. We choose GR for 
general relativity since general relativity deals with acceleration and gravitation. We 
restate our rule with the GR label. 

The GR Rule: The gain per second by a clock at height z  is 2GR

gz
T

c
 =

. 
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Now if that clock starts moving around we have the special relativistic time dilation we 
studied earlier. Engineers must keep track of both effects for a Global Positioning 
Satellite (GPS). For the special relativistic time dilation effect we have 
 

2

0 2
/ 1

v
T T

c
= −

 

The 0T  is the proper time, i.e., the time kept by the clock in the moving frame being 

observed. Remember always that your proper time is the time kept by a watch in your 
pocket. Time slows down for you in the moving frame. 
 

2

0 2
1

v
T T

c
= −

 

A Taylor expansion gives 

2

0 2
(1 )

2

v
T T

c
= −

            

2

0 2
(1 )

2

v
T T

c
 = − 

 

 
This brings us to our second rule which we label SR for special relativity. 

The SR Rule: The loss per second by a clock moving at v  is 

2

22
SR

v
T

c
 = −

. 

 
Now it is time for Feynman's Game. There are two clocks on a table in a room. You take 
one and I take the other. We each travel with our clocks doing whatever we want but we 
must bring our clocks back in one hour according to the room clock. The winner is the 
one whose clock gains the most time. 

2GR

gz
T

c
 =

          

2

22
SR

v
T

c
 = −

 

 
 Strategy 1: You should move your clock up as high as you can. 
 Strategy 2: It is a waste to move sideways That loses time for you. 
 Strategy 3: Don't speed up too much moving vertically as that loses time. 
 

Your score is given by adding up all the effects for each 1T s =  tick of the room 

clock. For each tick of the room clock, a player's gain or loss is given by the sum of the 
two relativistic effects. 
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player GR SRT T T =  +  

2GR

gz
T

c
 =

          

2

22
SR

v
T

c
 = −

 

23600

2 2
1 2

n n
score

n

gz v
T

c c=

 
 = − 

 
  

 
Now, we go over to an integral using our three rules 1)delta to d, 2)discrete variable to 
continuous, 3)summation sign to "snake." 

 

23600

2 2
1 2

n n
Score

n

gz v
T n

c c=

 
 = −  

 
       

2
1

2 20

( ) ( )

2

h

Score

gz n v n
T dn

c c

 
 = − 

 
  

 
We can replace n with t for time. 

2
1

2 20

( ) ( )

2

h

Score

gz t v t
T dt

c c

 
 = − 

 
  

We want to maximize this. If me multiply by 
2mc−  you have the Lagrangian in the 

integrand and S is called the action. We want to minimize the action to win the game. 
 

1
2 2

0

1
( ) ( )

2

h

Scoremc T S mv t mgz t dt
 

−   = − 
 

  

 
The action in more general terms is the integral of the difference between the kinetic 

energy and the potential energy. We also revert to the more common x  variable. 

 

21
( ) ( )

2

b

a
S mv t V x dt

 
= − 

 
  

 
The integrand is the Lagrangian. 

 

21
( ) ( )

2
L mv t V x= −
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W2. Least Action. 

 
Reference: Feynman R, Leighton R, and Sands M. The Feynman Lectures on Physics  
(3 volumes) 1964, 1966. Refer to Volume 2, Chapter 19. The Principle of Least Action. 
 
We would like to minimize the following from our game in the previous section. 
 

1
2

0

1
( ) ( )

2

h

S mv t mgx t dt
 

= − 
 

  

 
We see here the difference between the kinetic and potential energies. Let the 

integration go from a point "a" to point "b" and make the substitutions 

dx
v

dt
=

 for the 

velocity and ( )V x mgx=  for the potential energy. This gives us a more general 

expression for the potential energy. In this particular case, x represents the height. 
 
 

21
( ) ( )

2

b

a

dx
S m V x dt

dt

 
= − 

 
  

 
 

We are in search for the ideal path that minimizes this integral. Call this ideal path 

( )x t , i.e.,  the x  with a bar over it. Then, an arbitrary path ( )x t  can be expressed 

as a sum of the ideal path plus some deviation from the ideal. 
 

( ) ( ) ( )x t x t t= +  

 
For the speed we have 

 

( ) ( ) ( )dx t d x t d t

dt dt dt


= +

 and for the potential  

 

( ) ( )V x V x = + . 
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21
( ) ( )

2

b

a

dx
S m V x dt

dt

 
= − 

 
  

 
becomes 

 

21
( ) ( )

2

b

a

d x d
S m V x dt

dt dt




 
= + − + 

 
  

 
For the velocity we get 
 

2 2 2( ) ( ) 2 ( )
d x d d x d x d d

dt dt dt dt dt dt

  
+ = + +

 

 
 

2 2( ) ( ) 2
d x d d x d x d

higher order terms
dt dt dt dt dt

 
+ = + +

 

 
 

For the potential energy, we do a Taylor series expansion. 
 

21
( ) ( ) '( ) "( )

2
V x V x V x V x higher order  + = + + +

 

 

Note that the deviations ( )t  are small and very close to the idea path, i.e., 

( ) 1t . So we plan to neglect higher order terms, i.e., higher powers of a small 

quantity. 
 

21
( ) ( ) '( )

2

b

a

d x d x d
S m m V x V x dt

dt dt dt




 
= + − − 

 
  

 

21
( ) ( ) '( )

2

b

a

d x d x d
S m V x m V x dt

dt dt dt




 
= − + − 

 
  
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The variation in the action due to the path that wanders away from the ideal is given by 
 
 

'( )
b

a

d x d
S m V x dt

dt dt


 

 
= − 

 
  

 

For the idea path, this is zero. So we set 0S =  in search for a differential equation 

that will describe our ideal path. 
 

'( ) 0
b

a

d x d
S m V x dt

dt dt


 

 
= − = 

 
  

 

The   variable is arbitrary. We want that outside the brackets but we do not have a   

by itself for the other term. But we have a derivative o  . So we use integration by 

parts to lift the derivative off it. 
 
 

2

2

d d x d x d x d

dt dt dt dt dt


 

 
= + 

 
 

 
 

2

2

d x d d d x d x

dt dt dt dt dt


 

 
= − 

 
 

 
 

2

2
'( ) 0

b

a

d d x d x
S m m V x dt

dt dt dt
   

  
= − − =  

   
  
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2

2
'( ) 0

b

b

a
a

d x d x
S m m V x dt

dt dt
   

 
= − + = 

 
  

The integrated term 
0

b

a

d x
m

dt
 =

 since you must start at the beginning point "a" 

and go to point "b" for any of your paths. This means there is no digression for the 
points at the beginning and the end. This leaves us with 
 
 

2

2
'( ) 0

b

a

d x
S m V x dt

dt
  

 
= + = 

 
 , 

 

where now we can factor out the arbitrary  . 

 

2

2
'( ) 0

b

a

d x
S m V x dt

dt
 

 
= + = 

 
  

 

Now we use the arbitrary trick. Since the   are arbitrary deviations as we choose the 

different wrong paths, for the best path, everything else must be zero. 
 

2

2
'( ) 0

d x
m V x

dt
+ =

 

 
Do you recognize this? It is Newton's Second Law. Let's drop the bar now that we found 
our ideal path. 

 

2

2
'( ) 0

d x
m V x

dt
+ =

 

 

F ma= , where 

( )dV x
F

dx
= −

 and 

2

2

d x
a

dt
=

. 
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W3. The Lagrangian. 

 
In our previous section we minimized the action 
 

21
( ) ( )

2

b

a

dx
S m V x dt

dt

 
= − 

 
  

 
and arrived at Newton's Second Law 

 

F ma= , where 

( )dV x
F

dx
= −

 and 

2

2

d x
a

dt
=

. 

 

The integrand in the action integral is called the Lagrangian L , where 
 

2
1

( )
2

dx
L m V x

dt

 
= − 

 
 

 

21
( )

2
L mv V x= −

 

 

L KE PE= −  
 
 

The Lagrangian is found by writing down the kinetic energy and subtracting from it the 
potential energy. Now we arrive at an elegant and sophisticated way to write Newton's 
Second Law as a minimization principle. 

Start with the usual F ma= , where 

( )dV x
F

dx
= −

 and 

2

2

d x
a

dt
=

. 

 

21
( )

2
L mv V x= −

 

 

( )dV x L
F

dx x


= − =

     and     

dv d L
ma m

dt dt v


= =

  
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F ma=  

 
 

becomes 
 
 

L d L

x dt v

 
=

  . 

 
 

Finally, we revert to Newton's notation of a time derivative and get the following. 
 
 

 
 

or 
 

 
 
 
The above is also called an Euler-Lagrange Equation. When there are more than one 
dimension, you get one of these for each of the dimensions. Then they are called the 
Euler-Lagrange equations. 


