Theoretical Physics
Prof. Ruiz, UNC Asheuville
Chapter S Homework - Solutions. Cauchy Integral Formula
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S1. Analytic Functions. Take f(Z): 2" where N#—-1 so we avoid

1
f(z)=-
Z
Riemann conditions hold. Then we are in good shape since this covers any function of

. f — 7N .
. Your goal is to show that (Z) =7 s analytic, i.e., the Cauchy-

o0
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the form g (Z) o Z an . That means functions like the cosine and sine are in. The
n=0

hint below leads you to the solution.

Hint. Let your £ = X+ 1Y pe represented as

z=r(cos@+isind) =re"

n -
Now apply your n*" power to the z. Show that your u and v in f (Z) =7 =U+IV
are

u=r"cos(nd) ang V=r"sin(ng)

The (COS @ +isin Q)n = COS(I’]H) + isin(né’) part is de Moivre's formula.

Finally, use the chain rule to calculate your partial derivations. As an example, here is
one of the four partial derivatives from the Cauchy-Riemann relations.
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For full credit, show the calculation of all partial derivatives from first principles with your

results eventually expressed in terms of the polar coordinates ' and 0
Then show that the Cauchy-Riemann relations are satisfied.

Conclusion: Any function that can be expressed as a power series is analytic!



Z=X+iy=r(coséd +isin ) =re"

Solution.
f(z)=2"=r"e"
z" =r"(cosn@ +isinng)
U=r"cos(nd) ang V=r"sin(nd)
We want to check to see if the Cauchy-Riemann conditions.
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So we will need to calculate the following.
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Here are the individual pieces we will need.
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. =
Xx=rcosd y=rsing r’=x"+y? 9=tanl;

2 2 2
Startwith ' = X +Y anduse implicit differentiation:

or X _ p oy ing
2rdr = 2xdx + 2ydy giving&—?—cos and 8y_ " =3I
d . 1 y
Below, we will need Etan lSZ:l__ksz,wheresz;.
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Summary: U = r' COS(I’I@) and V= r' Siﬂ(l’l@)_
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We will also need the following four partial derivatives.
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Now we check the other Cauchy-Riemann equation. Does 5
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S2. Contour Integration. You will evaluate the integral = _Lo 1+ X2 using

complex variable techniques. But first, evaluate this integral from the observation that

fitan‘lx::——l—g
dx 1+ x°-

Show that you get the cute answer | =nx .
Now you will do the same integral using the method of contour integration.

A See two singularities marked in the figure,

e

e % & labeled as poles. These are at £ = nsl
C'R ){,’Z/ \ Note that the path shown has an integration
‘ t/Z component along the real axis.
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P,lﬂ indicated in the figure gives
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All we have to do now is let R— and hope that the semicircle integration along

CR goes to zero. Note that then the complete enclosed contour integral gives a
nonzero answer for just the path along the complete x-axis. You expect the semicircular

path to give zero because you have your | =7x , which you know is the answer.

Show
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Hint. Let Z = Re' and express the integral in terms of R and € . Then proceed.



Solution.

o dX d -1
Find 0] 4 X2 : From the given, we know dx 1+ X2

Part 1. Evaluate the integral from the above given formua involving the derivative.
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Part 2. Contour Integration.
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Part 3. Show
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