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Chapter M. The Method of Frobenius 
 

HW-M1. Sines and Cosines. Solve the differential equation " 0y y+ = . 

 
Step 1. “Series Plug In.” 
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Then " 0y y+ =  becomes 
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Step 2. "Fix the Exponents." 
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Let 2m k= − . Then, 2k m= + , 1 1k m− = + , and 2k m− = . 
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Relabel m as k. 
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Can we start k out as 0? Yes since k above really starts at -2 and then -1, both giving 0. 
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Step 3. “The Arbitrary Trick.” We pull out the common 
k

x factor, arriving at the following. 
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Since the equation must be true for all x and x is arbitrary, the quantity inside the brackets 
must vanish. 
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Step 4. “The Recurrence Relation.”  
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For the even solution, we take 0
1a =

 
and 1
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as instructed in the problem. 
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The even series solution is 
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For the odd solution, we take 0
0a =

 
and 1

1a =
 
as instructed in the problem. 
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The odd series solution is 
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HW-M2. The Laguerre Differential Equation.  

Edmund Laguerre (1834-1886)  
Courtesy School of Mathematics & Statistics 
University of St. Andrews, Scotland 

The Laguerre differential equation is 
 

'' (1 ) ' 0xy x y ny+ − + = , 

 

 where 0,1,2,3,...n =  

 
Step 1. "Series Plug In." 
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Step 2. "Fix the Exponents." Let 1m k= − , 1k m= + . 
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Relabel and check that to start at k = 0 is okay. We can since m = -1 gives nothing above. 
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Step 3. “The Arbitrary Trick
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Step 4. “The Recurrence Relation.” 
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We choose 0
!a n= . A alternative convention is to choose the zeroth term to be 1.

  
 
HW-M3. Laguerre Polynomials. 
 

0. The Zeroth Laguerre Polynomial ( 0n = ) 
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1. The First Laguerre Polynomial ( 1n = ) 
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2. The Second Laguerre Polynomial ( 2n = ) 
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3. The Third Laguerre Polynomial ( 3n = ) 
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I will throw in the fourth Laguerre Polynomial (NOT REQUIRED IN THE HOMEWORK). 
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