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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter M Notes. The Method of Frobenius 
 
M1. The Method of Frobenius. 

Ferdinand Georg Frobenius (1849-1917)  
Courtesy School of Mathematics & Statistics 
University of St. Andrews, Scotland 

This approach to solving differential equations 
consists of four general steps. 
 
Step 1. Series Plug In. First, you assume a solution 
in the form of a simple power series. 
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If this does not work, one can try k + r. After that, 

there are other tricks one learns about in differential equations. 
 

Plug into your equation y(x), y'(x), and y"(x) . 
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You could let k start at 1 in the y' sum since k = 0 gives zero anyway. Similarly, you 
could start k at 2 in the second sum since k = 0 and k = 1 both give zero anyway. 
 

Step 2. Fix the Exponents. Shift k  in some terms if needed and relabel so that all the 

terms go from 0k =  to k =   in “sync” with each other. 

. 
Step 3. The Arbitrary Argument. Get everything on one side of the equation and factor 

out 
kx . Now use the arbitrary argument to set everything else to zero term by term in 

your sum. The arbitrary argument states that if your infinite sum happens to be zero for 

a particular value of x , it surely will not be for an arbitrary value of x . 

 

Step 4. The Recursion Relation. Find a recurrence relation for the coefficients ka . 
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M2. Equations Encountered in Physics. Consider Newton's Second Law. 

 
A Mass is Attached to Spring. 
Courtesy David M. Harrison 
Department. of Physics 
University of Toronto 
 

( )dp d mv
F ma

dt dt
= = =

 

 
Hooke's Law gives the force equal to 
 

kF kx= − . 

 
For a retarding frictional force proportional 
to the velocity: 
 

bF bv= −  

 
 

Putting this all together, k bF F F= + , and we get. 

 

kx bv ma− − =  

 

0ma bv kx+ + =  

 

2

2
0

d x dx
m b kx
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+ + =

 

 
Equations in classical mechanics have a second derivative, first derivation, and zeroth 
derivative. Using y = y(x), a general form mathematicians study is relevant to physics. 
 

( ) "( ) ( ) '( ) ( ) ( ) 0P x y x Q x y x R x y x+ + =  

 
This also covers the time-independent Schrödinger equation, which is a second-order 
differential equation. In our course on the various areas of physics we have never 
encountered a third derivative. The Dirac equation is first order. So we are all set. We 
will consider a sample differential equation that has this form in our next section. 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

 

M3. The Legendre Differential Equation. 
 

Adrien-Marie Legendre (1752-1833) 
From Wikipedia: 1820 watercolor caricature of 
Adrien-Marie Legendre by French artist Julien-
Leopold Boilly. It's the only existing portrait. 
 
The Legendre differential equation is 
 

2(1 ) '' 2 ' ( 1) 0x y xy l l y− − + + = , 

 

 where 0,1,2,3,...l =  

 
When we solve the Schrödinger equation for the 
hydrogen atom in spherical coordinates in quantum 
mechanics, we come up with the equation in the 
following form where p is some constant. 

 
2(1 ) '' 2 ' 0x y xy py− − + =  

 
Let's use this latter form and begin with the method of Frobenius. During our solution, 

you will see how the ( 1)l l +  comes about. 

 
Step 1. "Series Plug In." We assume a solution in the form of a power series: 

0
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
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= . The we calculate derivatives. We are going to keep k = 0 for each 

since k = 0 gives zero anyway in the y' equation and k = 0 or k = 1 both give zero 
anyway in the y" series. 
 

1

0

' k

k

k

y ka x


−

=

=
 
and   

2

0

"( ) ( 1) k

k

k

y x k k a x


−

=

= −  

 
We can stop taking derivatives since in our case we have a second-order differential 
equation that requires up to the second derivative. We plug in the power series for y , 

'y  and ''y  Then 
2(1 ) '' 2 ' 0x y xy py− − + =

 becomes  
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We want to collect the “x” variables in one place in each of the summations so 
everything is transparent for us. 
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Step 2. "Fix the Exponents." We need to adjust the exponents and the k-starting point 

so that we have 
kx in each term. The only summation needing adjustment is the first 

one. Let 2m k= − , i.e., 2k m= +  so we can write 

 

2

2

0 2

( 1) ( 2)( 1)k m

k m

k m

k k a x m m a x
 

−

+

= =−

− = + +  . 

 

Note that we can start m  at 0m =  since you get zero for 2m = −  and 1m = −  anyway. 
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The variable “m” is our “summation variable” since it is summed over, i.e., forced to take 
on each integer value of the infinite sum. So any index can be used. Therefore, without 
any fuss, we simply replace it with “k”. 
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Putting this back into our differential equation, we have 
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Step 3. “The Arbitrary Trick.” We pull out the common 
kx factor, arriving at 
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Since the 
kx  factor is arbitrary, i.e., we can choose x  to be what we would like, the 

expression in the brackets must vanish for each k. 
 

2( 2)( 1) ( 1) 2 0k k k kk k a k k a ka pa++ + − − − + =  

 
This means 
 

 2( 2)( 1) ( 1) 2k kk k a k k k p a++ + = − + −  

 
Note that 
 

2 2( 1) 2 2 ( 1)k k k k k k k k k k− + = − + = + = +   

 
Therefore, 
 

 2( 2)( 1) ( 1)k kk k a k k p a++ + = + −
 

 
Step 4. “The Recursion Relation.” Our final step is a recursion (or recurrence) relation 

where 2ka +  is given in terms of ka . 
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And now we see that our series will run wild forever unless p is such that for some k 
eventually, 
 

max max( 1) 0k k p+ − = . 

 
This will happen if 

 

( 1)p l l= + , where 0,1,2,...l =  

 

For each value of  l  we have a polynomial. These polynomials corresponding to the l  

values are known as Legendre polynomials. You now see why the L:egendre differential 

equation is given with ( 1)p l l= + . 
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We come to the crossroads where mathematics (represented by Legendre, left) meets 
physics (Schrödinger, right). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Math: Let ( 1)p l l= +  with  l = 0, 1, 2, 3 ... so that we get polynomials to study. 

 
Physics: Boundary conditions force wave functions to be finite, i.e., a finite series. 
 
In either case, the series must be terminated. Legendre had already taken care of this. 
 
In quantum mechanics, the differential equation we are investigating is rich in orbital 
physics for a general spherically-symmetric potential of the form V = V(r). The 
requirement that we must have a finite probability distribution can be thought of as 
natural quantization coming from the Schrödinger equation. Often, this requirement is 
referred to as a boundary condition. 
 

 
Angular Momentum 
Courtesy Ron Nave, Hyper Physics 
 
This particular requirement in the context of the physics 
here leads to the quantization of the total angular 
momentum. But we are not going to derive this result. We 
just mention this for you to be on the lookout for it if you 
take quantum mechanics. 
 

2 2 ( 1)L l l= +  

 

Note that the quantization along the z-axis gives Bohr's 

version postulated in 1913. You can only choose one axis with the total angular 

momentum in order to have a common set of eigenstates (i.e., for Lz and L). 
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M4. The Legendre Polynomials. 
 

These correspond to your solutions ( )y y x=  where 0,1,2,...l =  and they are 

designated by ( )lP x . Note that when l  is even, the even series terminates at some 

point but the odd series does not. So we will pick 1a  to be zero for the even cases of l . 

Similarly, we choose 0a  to be zero for the odd cases of l . Finally, by convention, we 

choose the nonzero 0a  or 1a  such that (1) 1lP = . Keep the recurrence formula in front 

of you for all these calculations. 
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0. The Zeroth Legendre Polynomial ( 0l = ). 

 

For 0l =  we set 1 0a =  and  note that 0 0a  . Our recursions relation is 
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So we are off to find 2a .  We do this by setting k = 0. 

 

0 2 0

0(0 1) 0(0 1)

(0 1)(0 2)
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, which leads to 2 0a = . 

 
The zeroth Legendre polynomial is 
 

0 0( )P x a= . 

 

With the convention that for all the Legendre polynomials (1) 1lP = , we have 0 1a =  

and therefore, 
 

0 ( ) 1P x =  
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1. The First Legendre Polynomial ( 1l = ). 
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For 1l =  we set 0 0a =  and  note that 1 0a  . Our recurrence relation is 
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So we are off to find 3a .  We do this by setting k = 1. 
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The first Legendre polynomial is 
 

1 1( )P x a x= . 

 

With the convention that for all the Legendre polynomials 0 (1) 1P = , we have 1 1a =  

and therefore, 
 

1( )P x x=  

 
We will proceed to the next polynomial on the following page. 
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2. The Second Legendre Polynomial ( 2l = ). 

 

For 2l =  we set 1 0a =  and  note that 0 0a  . Our recurrence relation is 
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So we are off to find 2a .  We do this by setting k = 0. 
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Then for 4a  set k = 2. 
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We are finished. The second Legendre polynomial is 
 

2 2 2

2 0 2 0 0 0( ) 3 (1 3 )P x a a x a a x a x= + = − = − . 

 

With the convention that for all the Legendre polynomials (1) 1lP = , we must have 

 

2 0 0(1) (1 3) 2 1P a a= − = − =    and   0

1
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Therefore, 
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Writing the polynomial with the highest power first, we have 
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3. The Third Legendre Polynomial ( 3l = ). 

 

For 3l =  we set 0 0a =  and  note that 1 0a  . Our recurrence relation is 
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So we are off to find 3a .  We do this by setting k = 1. 
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Then for 5a  set k = 3.
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We are finished with the

 

recurrence relation. The third Legendre polynomial is shown 

below, but we need to still find the constant.
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With the convention that for all the Legendre polynomials (1) 1lP = , we must have 
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PM1 (Practice Problem). Find the 4th and 5th Legendre polynomials. 


