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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter K Notes. Spinors Part II: The Pauli Equation 
 
K1. Measurement. Our eigenvector analysis in the previous chapter is the key to 

understanding measurement in quantum mechanics. An operator stands for some 
measurement you make and if the state is an eigenstate of that operator, you get the 
eigenvalue. Below we measure a state in the third energy level. 
 

3 3 3H E =  

 
The H is none other than the left side of the Schrödinger equation, called the 
Hamiltonian. Sometimes we prefer to work with the abstract operator symbols, a 
hallmark of Heisenberg's approach to quantum mechanics. 

PK1 (Practice Problem). Show 3 3 3H E =  for a particle in a one-dimensional 

box. Most of the solution is given below. 
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When you calculate 3 3 3H E =  you will get the energy eigenvalue. Compare your 

answer to the third energy level found from the formula we found earlier. 
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Below we make a measurement and find the electron in a spin-up state. 
 

1 1 0 1 1

0 0 1 0 0
z

       
= =       

−       
 

 
But since the actual measured value will be h-bar over two from experiment, we write 
 

2
z zS =  

as the measurement operator for the electron spin-1/2 particles. If you make two 
measurements A and B where the state is an eigenstate of each operator, then 
 

A a =      and     B b = , with 

 

( )AB A b bA ba   = = =  

 

( )BA B a aB ab   = = =  

and all is well. The measurements can be accomplished in either order. Note that when 
this happens, the measurement operators commute, which you can see by subtracting 
the above pair of equations. 
 

( ) ( ) 0AB BA ba ab − = − =      and     [ , ] 0A B =  

 
But remember the operator action of the Pauli matrix x on our spin-up state? 

 

1 0 1 1 0

0 1 0 0 1
x

       
= =       

       
 

 
We do not get the same state back. In fact we kicked the state into something else. The 
electron now has spin down. So you can disturb the states. When this happens, the 

measurement operators do not commute. Before hitting the state with x the electron 
was spin up. 

1 1 0 1 1

0 0 1 0 0
z

       
= =       

−       
, 
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But afterwards, we get 

0 1 0 0 0

1 0 1 1 1
z
       

= = −       
−       

. 

 
Checking the commutator, you find something you already have calculated in the 
previous chapter. 
 

0 1 1 0 1 0 0 1
[ , ]

1 0 0 1 0 1 1 0
x z 

       
= −       

− −       
 

 

 

0 1 0 1 0 1 0
[ , ] 2 2 2

1 0 1 0 1 0 0
x z y

i
i i

i
  

− − −       
= − = = − = −       

−       
 

 
 

Here is your general result from the last chapter. 
 

, 2j k jkl li     =   

 
 

When operators do not commute, the measurements disturb the states. 
 

There is an Uncertainty Relation! 
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K2. Heisenberg Uncertainty Relation. 
 

Werner Heisenberg (1901-1976)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 
Now we consider position and momentum. Recall 
from our chapter introducing quantum mechanics 
that  

E i
t


→

      and     p i→ −  . 

Therefore, we have the momentum operator in one 
dimension as 

d
p i

dx
= −

 

 
Does the position operator x commute with the momentum operator p? Let's check. 
 

( )
d d

x p x i i x
dx dx


 

 
= − = − 

 
 

 

( ) ( )
d d

p x i x i i x
dx dx


  

 
= − = − − 

 
 

 
Subtracting these, 
 

( ) ( )xp px i  − = , 

 

 

and we obtain for the commutator 
 

 ,x p i=  

 
So if you make a position measurement first, then measure the momentum, you kick the 
state and no longer have the position you just measured. There is an uncertainty in the 
combined position and momentum measurements. The above commutator is an elegant 
form for Heisenberg's Uncertainty relation. 
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Think of the Schrödinger picture of quantum mechanics as the way with differential 
equations. The Heisenberg picture involves operators. Both ways are equivalent 
formulations. Thus we credit two physicists as architects of quantum mechanics. 

 
 
Max Born (1882-1970)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 
But we should include Max Born among the architects 
of quantum mechanics since he gave us the 
interpretation of the wave function in terms of 
probability. 

( ) *( ) ( )P x dx x x dx =  

 
Nobel Prizes for Quantum Mechanics 

Heisenberg (1932) 
Schrödinger (1933) 

Born (1954) 
 

Also Grand pop to Olivia Newton-John 
 
Schrödinger shared his prize with Dirac and Born shared the prize with another scientist 
honored for another achievement in physics. 

Erwin Schrödinger (1887-1961) Werner Heisenberg (1901-1976) 
  

 

2 2

22

d
V E

m dx


 − + =

 

 

H E =  

 ,x p i=  



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

K3. Angular Momentum. We continue with the powerful language of operators. 

 
The angular momentum operator is found from the definition in classical physics, 
 

L r p=  , but now we treat these as operators. 

 
 
 
 

 
 
 
 
 
Note that the order of position and momenta do not matter in the above equation since 
the pairs have different spatial dimensions. We could not be cavalier if we had xpx. We 
could not switch to pxx. We find 
 

x z yL yp zp= − , 

 

y x zL zp xp= − , 

 

z y xL xp yp= − . 

 
Let's find a commutator. 
 

[ , ] ,x y z y x zL L yp zp zp xp = − −   

 

[ , ] [ , ] [ , ] [ , ] [ , ]x y z x z z y x y zL L yp zp yp xp zp zp zp xp= − − +  

 

[ , ] [ , ] [ , ] [ , ] [ , ]x y x z z z y x y zL L yp p z yx p p p p z z xp z p= − − +  

 

[ , ] ( ) 0 0 ( )x y x y x yL L yp i yx p p xp i= − −  −  +  

 

[ , ] ( ) ( ) ( )x y x y y x zL L yp i xp i i xp yp i L= − + = − =  

( ) ( ) ( )z y z x y x

x y z

i j k

r p x y z i yp zp j xp zp k xp yp

p p p

  

  

 = = − − − + −
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PK2 (Practice Problem). Show that along with 
 

[ , ]x y zL L i L= , we have [ , ]y z xL L i L=  and [ , ]z x yL L i L= . 

 
Since each angular momentum component commutes with itself, we can write 

 

,j k jkl lL L i L  =   

 
But wait, this looks very similar to 
 

, 2j k jkl li     =   

 
This suggests that the Pauli spin matrices are proportional to a type of angular 
momentum that has only two values from working with these operators on spinors! But 
angular momentum has units of h-bar. So we do two things. 
 

1. Insert the h-bar to get angular momentum units. 
 

2. Get rid of that 2 so the commutation relation looks like the L relations. 
 
Then, 
 

2
x xS =           

2
y yS =           

2
z zS =  

 
 

,j k jkl lS S i S  =   

Summary: 
 

Orbital Angular Momentum: L r p=   with ,j k jkl lL L i L  =   

 

Intrinsic Angular Momentum for the Electron: 2
S =

 with ,j k jkl lS S i S  =   

 

Total Angular Momentum: J L S= +  
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K4. General Spin Eigenstates. 
 
We choose our coordinate system as 
shown in the figure, following the 
convention used in physics. Note that in 
math classes, the angle definitions are 
often interchanged. 
 

Let the unit vector n  point along the r 

direction, i.e., n r= . We want to find 

the eigenvectors for a spinor along such 
an arbitrary direction. 
 
We start with our spin-up and spin-down 
cases along the z-direction to be 

1

0

 
=  

 
   and   

0

1

 
=  

 
, 

 

which are eigenvectors for z . We 

work with Pauli matrices because the math is faster. you can always put the h-bar in 
and 1/2 later to get the actual spin. 
 

sin cos sin sin cosn r i j k    
    

 = + +  

0 1 0 1 0
sin cos sin sin cos

1 0 0 0 1

i
n

i
     

 −     
 = + +     

−     
 

( )

( )

cos sin cos sin

sin cos sin cos

i
n

i

   


   

 − 
 = 

+ − 
 

 

cos sin

sin cos

i

i

e
n

e





 


 

−  
 = 

− 
 

 
Image Adapted from 

Mauro Giachero, Wikimedia 
Creative Commons License 

Attribution-Share Alike 
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Eigenvalues. We now set up the eigenvalue problem. 
 

1 1 1

2 2 2

cos sin

sin cos

i

i

c c ce
n

c c ce





 
 

 

−       
 = =      

−      
 

 
For the solution of the eigenvalues, the following determinant must vanish. 

 

cos sin
0

sin cos

i

i

e

e





  

  

−−
=

− −  

 
The result for the vanishing determinants 

 

2 2 2(cos ) sin 0  − − − =  

 

2 2 2cos sin 0  − + − =  

 

2 2 2cos sin 1  = + =  

 

1 =   

 
Eigenvectors. We proceed to find the eigenvectors. We will give the eigenvector that 

goes with 1 = +  the name 
  and for 1 = −  we will use 

 . We use a and b 

as temporary parameters for the components we use. For the first case we find 
 

cos sin

sin cos

i

i

a ae

b be





 

 

−     
=     

−     
 

 

cos sin

sin cos

i

i

aa b e

ba e b





 

 

− +  
=   

−   
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For the upper component 

cos sin ia b e a  −+ =  

 

sin (1 cos )ib e a − = −  

 

(1 cos )

sin

ib
e

a





−
=

 

 
Do you remember an elegant identity involving a half angle and/or double angle from 
trig you studied some time ago? It will unlock the secret to spinor rotations? Recall that 
we derived these two identities earlier in our course. 
  

cos( ) cos cos sin sin     + = −  

 

sin( ) cos sin sin cos     + = +  

 
From the above, we obtain. 
 

sin 2 2sin cos  =      and     
2 2cos2 cos sin  = −  

 

sin 2sin cos
2 2

 
 =      and     

2 2cos cos sin
2 2

 
 = −  

 
Summary: 

(1 cos )

sin

ib
e

a





−
=

 

 

sin 2sin cos
2 2

 
 =  

 

2 2cos cos sin
2 2

 
 = −  

 
But wait! 

2 21 cos 1 cos sin
2 2

 


 
− = − + 

 
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2 2 21 cos sin sin 2sin
2 2 2

  


 
− = + = 

 
 

 
Now we are ready. The result is 

22sin
(1 cos ) 2

sin
2sin cos

2 2

i ib
e e

a

 




 

−
= =

 

sin
2

cos
2

ib
e

a






=

 

We can pick 

cos
2

a


=
   and   

sin
2

ib e 
=

   since * * 1a a b b+ =  

 
We are normalized. 

 
The eigenvector is 

cos
2

sin
2

ie 






 
 

=  
 
  

 

 
PK3 (Practice Problem). Use the lower component equation in 
 

cos sin

sin cos

i

i

aa b e

ba e b





 

 

− +  
=   

−   
 

 
and normalization to obtain the same result. 
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PK4 (Practice Problem). Show that the eigenvector for 1 = −  is 

 

sin
2

cos
2

ie  




−



 
− 

=  
 
  

. 

 
Summary: 

cos
2

sin
2

ie 






 
 

=  
 
  

        

sin
2

cos
2

ie  




−



 
− 

=  
 
  

 

 

The dual of 
  is defined as 

†

sin cos
2 2

ie   
 +



 
= −    

 
 

 

Then 

†
cos

2
sin cos 0

2 2
sin

2

i

i

e

e







 
 



+

 

 
  

= − =      
   

  

 

 
The eigenstates are orthogonal. 
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K5. What Does It All Mean? 

 

cos
2

sin
2

ie 






 
 

=  
 
  

  

sin
2

cos
2

ie  




−



 
− 

=  
 
  

 

 
Whenever you feel this question coming on, just 

look at friendly cases. Set  = 0°. Then, 
 

1

0z axis


 −

 
=  

 
      

0

1z axis


 −

 
=  

 
 

 
We know what this means. The left spinor is an electron with spin aligned up. The right 

spinor is a spin state where the spin is aligned down. Now check out  = 90° with  = 0°, 
which is along our x-axis. 

11

12
x axis


 −

 
=  

 
 

 
This is an eigenstate of a spin measurement along the x-axis where the spin is up 
relative to the x-axis. But it is expressed in terms of a mixture or superposition of states 
relative to the z-axis. 
 

1 01 1

0 12 2
x axis


 −

   
= +   

   
 

 

1 1

2 2
x axis z axis z axis

  
 −  −  −

= +
 

 
So for the spin up along the x-axis, when measured with respect to the z-axis you can 
get either up or down. In fact the probability for each is 1/2. 
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What about when  = 180°? 

cos
2

sin
2

ie 






 
 

=  
 
  

 

 
becomes 

 
 

0 1 0
( 180 ) 0

0 1

i

i
e

e




 



     
=  = = +     

     
 

 

1 2z axis z axis z axis
c c  

− −  −  −
= +  

 
 

The state for you, standing on your head, is up since it is your eigenstate. But for the 
person oriented along the positive z-axis, the spin is flipped. We get this result from the 
probabilities. The probability for regular z-axis spin up is c1*c1 = 0..For spin down we 
find 

 

2 2* 1i ic c e e −= = . 

 

What about  = 360°?  

1
( 360 )

0
 



− 
=  =  

 
 

 
Well, we get 100% probability that we are spin up again since 
 

1 1* ( 1)( 1) 1c c = − − =  

 
But we DO NOT get the exact same thing back due to a phase factor. You have to go 
two complete 360° rotations for that due to the half angles. 
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Courtesy Council on Science and Technology, Princeton University 
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K6. The Pauli Equation 

 
We will assume time-independent potentials in this section and thus work with the time-
independent form of the Schrödinger equation. We also consider spin-1/2 particles such 
as electrons. 
 

To include spin we promote our wave function   to 

 

1

2






 
=  

 
 

 
Replace the Schrödinger equation 

 

2
2

2
V E

m
  −  + =

 

with 
 

2
1 1 12

2 2 22
V E

m

  

  

     
−  + =     

     
, 

 
where the potential is a matrix potential 
 

11 12

21 22

V V
V

V V

 
=  

 
. 

 
The H operator 

2
2

2
H V

m
= −  +

 becomes 

 

2
11 122

21 22

1 0

0 12

V V
H

V Vm

  
= −  +   

   
. 
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Wolfgang Pauli (1900-1958)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 

 
The Pauli Effect. A joke, but taken seriously by 
Pauli and some others. Background: Physicists 
are either theorists or experimentalists for many 
years now. You either work with the math and 
calculations to explain observed phenomena or 
spend your career making the measurements and 
gathering the data. However, there are rare 
exceptions like the great Enrico Fermi. 
 
Theorists have an image of being inept in lab. 
Instead, they feel at home with mathematical 
physics. So they might break things in lab, ruin 
experiments, or do something not too intelligent, 
even putting themselves and others in danger. 
 

So the Pauli effect is this - if a theorist walks into a lab where an experimentalist is 
working, the experimental equipment will break or malfunction by just the mere 
presence of the theorist. It is said the greater the theorist, the greater the destruction. 
 
A famous story is the mysterious failure of an experiment in a lab in Germany. But Pauli 
was not even present. However, later they discovered Pauli was at the train station in 
that town at the time of the malfunction. 
 
Pauli and the famous psychiatrist Carl Jung, a student who broke away from Freud, 
analyzed this in terms of Jung's concept of synchronicity, where coincidences are 
believed to happen for a reason with some underlying connection. 
 
A Famous Pauli Put Down. "Not only is it not right, it's not even wrong!" 
 
Pauli Tough on a Student in Class. One day in lecture Pauli said something was 
trivial. The student did not see it, so the student asked Pauli for an explanation. Pauli 
left the room and came back a few minutes later. On his return, Pauli said "It is trivial!" 
Apparently Pauli left the lecture hall to check his comment out in his office and satisfied 
himself that it was indeed an easy calculation. This was not quite the answer the 
student was hoping for. 
 
Max Born Comments on His Assistant Pauli. "Since the time when he was assistant 
in Göttingen, I knew he was a genius, comparable only to Einstein himself." (from 
Quips, Quotes and Quanta: An Anecdotal History of Physics by Anton Z. Capri). 


