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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter J Notes. Spinors Part I. Pauli Matrices 
 
J1. Fun with Matrices. Consider a general 2 x 2 matrix where each element can be 

complex in general. Note that we will be using notation common in physics. 
 

a b
A

c d

 
=  
 

 

 
1. The Trace 

( )Tr A a d= +  

 
2. The Transpose 

T
a c

A
b d

 
=  
 

 

Note that ( ) ( )TTr A Tr A= . 

 
3. The Complex Conjugate 

* *
*

* *

a b
A

c d

 
=  
 

 

Caution: In pure math A  is used instead. 

 
4. The Hermitian Conjugate 
 

†
* *

( )* ( *)
* *

T T
a c

A A A
b d

 
= = = 
 

  

 
Caution: In pure math the star or H is used for the Hermitian conjugate. 
 
5. The Determinant 
 

det( )A A ad cb = −  
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6. The Inverse 

1A−
 such that 

1AA I− = , where 

1 0

0 1
I

 
=  
 

 

 
Caution: Some matrices do not have inverses. 

 

1 0

0 0
B

 
=  
 

 does not have an inverse since  

 

1 0

0 0 0 0

a b a b
BA

c d

     
= =     
     

 and you can never get 

1 0

0 1

 
 
 

. 

 
We will arrive at working out the inverse by trying a couple simple cases. 
 
Let's see if we can find an inverse 
 

1
a b

A
c d

−  
=  
 

   for   

3 0

0 4
A

 
=  
 

. 

 
We note that 

3 0 1 0

0 4 0 1

a b

c d

     
=     

     
 leads to 

 

3 1a = , 3 0b = , 4 0c = , and 4 1d = . 

 
Solve these and insert the values below. 

1
0

4 0 4 01 13

0 3 0 31 12
0

4

a b

c d A

 
      

= = =      
      

  

 

 
Rule 1. Swap the diagonal components and divide by the determinant. 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

PJ1 (Practice Problem). See if we are lucky and that our prescription works for 
complex numbers too. Try it for 

3 0

0 4 2

i
A

i

+ 
=  

+ 
. 

 
Let's now look for an inverse for 

3 1

0 4
A

 
=  
 

. 

 
You see, we are trying to avoid solving four equations with four unknowns. Instead we 
want to psyche out the solution and in the process gain insight into how these inverses 
work. 
 

3 1 1 0

0 4 0 1

a b

c d

     
=     

     
 leads to 

 

3 1a c+ = , 3 0b d+ = , 4 0c = , and 4 1d = . 

 
Solving these, we are led to 
 

1 1

4 1 4 11 13 12

0 3 0 31 12
0

4

a b

c d A

 
−  − −     

= = =      
      

  

 

 
Rule 2. Put minus signs in front of the off-diagonal components. 

PJ2 (Practice Problem). See if our prescription works for complex numbers too. Use 
the prescription to find the inverse for A and check to see if it works. 

3 1

0 4 2

i i
A

i

+ + 
=  

+ 
. 
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PJ3 (Practice Problem). To gain more confidence in our procedure, find the inverse to 
the following matrix using our prescription and check the result. 

3 1

2 3 4 2

i i
A

i i

+ + 
=  

+ + 
. 

 
 
So we proudly summarize our procedure below. 
 
 

Given 

a b
A

c d

 
=  
 

, 

1 1 d b
A

c aA

−
− 

=  
− 

 where A ad cb= − . 

 
 
J2. Unitary Groups. First, we define the group of unitary n x n matrices where the 
binary operation is matrix multiplication. A matrix is unitary if 
 

† 1U U−=  

 
1. U(1), i.e., 1 x 1 Matrices 
 

 U u=    and    † *U u=  

 

      † * * 1UU u u uu= = =  

 

( ) iu e  =  

 

Closure: 
( )( ) ( ) i i iu u e e e     += =  

 

Association:    ( ) ( ) ( ) ( ) ( ) ( )u u u u u u     =  

 

Identity: (0) 1I u= =  

 

Inverse: 
1( ) iu e − −= , consistent with 

1 †U U− = . 
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2. SU(1) 
 
The "S" stands for "special." We must have the determinant equal to 1. 
 

 det det 1U u u= = =  

 

So the group SU(1) contains the single matrix: [1]A= . 

 
 
3. SU(2) 
 
This group consists of the special unitary 2 x 2 matrices. 
 

Start with 

a b
A

c d

 
=  
 

, 

1 1 d b
A

c aA

−
− 

=  
− 

. 

 
As the determinant must be 1, we have 
 

a b
A

c d

 
=  
 

     and     

1
d b

A
c a

−
− 

=  
− 

. 

 
For the unitary matrices we must have 

† 1A A−=      which means     

1
* *

* *

a c
A

b d

−  
=  
 

. 

 

The conditions are *a d=  and *c b= −  along with 1A ad bc= − = . 

 
Let's write the real and imaginary components out, applying these conditions. Then, 
 
 

r i r i

r i r i

a ia b ib
A

b ib a ia

+ + 
=  

− + − 
 

 

for the general special unitary 2 x 2 matrix, where 
2 2 2 2 1r i r ia a b b+ + + = . 
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"Derivation of the Pauli Matrices" 
 
Wolfgang Pauli (1900-1958)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 
Our general form the a matrix in the group SU(2). 
 

r i r i

r i r i

a ia b ib
A

b ib a ia

+ + 
=  

− + − 
 

 
Recall how you can write a vector in terms of basis 
unit vectors: 

 

x y zA A i A j A k= + + . 

 
Check out the same trick with matrices: 
 

1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1

a b
A a b c d

c d

         
= = + + +         
         

. 

 
But there is a natural expansion for our SU(2) matrices: 
 

r i r i

r i r i

a ia b ib
A

b ib a ia

+ + 
=  

− + − 
 

 
 

1 0 1 0 0 1 0 1

0 1 0 1 1 0 1 0
r i r iA a ia b ib
       

= + + +       
− −       

 

 
 

1 0 1 0 0 0 1

0 1 0 1 0 1 0
r i r i

i
A a ia ib ib

i

−       
= + + +       

−       
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The Pauli matrices are 

0 1 0 1 0

1 0 0 0 1
x y z

i

i
  

−     
= = =     

−     
. 

 

The anticommutator of A and B is defined as { , }A B AB BA + . 

 
Leopold Kronecker (1823-1891)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 
The Kronecker Delta symbol is defined as 
 

 
 

and named after the German mathematician 
Leopold Kronecker. It is a symmetric symbol. 
 
PJ4 (Practice Problem). Show 
 

{ , } 2j k jk I  =  

The commutator of A and B is defined as  ,A B AB BA − . 

 
Tullio Levi-Civita (1873-1941)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 
The Levi-Civita or permutation symbol is defined 
below. It is an antisymmetric symbol. 
 

 
 
PJ5 (Practice Problem). Show 

 

, 2j k jkl li     =   and thus SU(2) is non-abelian. 

 
Kronecker and Lev-Civita Definition Images Courtesy Wikipedia 
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4. SO(2) 

This group consists of the special unitary orthogonal matrices. These are matrices 
where the columns and rows, thought of as vectors, are orthogonal. Remember or 
rotation matrix in 2D? 
 

cos sin
( )

sin cos
R

 


 

 
=  

− 
 . 

 

11 12

21 22

cos sin

sin cos

a a
A

a a

 

 

   
= =   

−  
 

 
These matrices satisfy our orthogonal conditions since 
 

11 12 21 22 cos sin cos sin 0a a a a    + = − =  

 

11 21 12 22 cos sin cos sin 0a a a a    + = − + =  

 
Note that now the transpose is the inverse. 
 

1 TA A− =  
 

1
cos sin cos sin 1 0

sin cos sin cos 0 1
AA

   

   

−
−     

= =     
−     

 

 
 

PJ6 (Practice Problem). Show that the matrix 
 

1 11

1 12
A

 
=  

− 
 

is an orthogonal matrix. 
 
 
PJ7 (Practice Problem). Show that SO(2) is an abelian group. 
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J3. Eigenvalues. The spin of the electron has only two values, which we refer to as 
spin up or spin down. We represent these two states by a column vector having two 
elements. This two-valued vector is called a spinor. 
 

1

0

 
=  

 
   and   

0

1

 
=  

 
 

 
The SU(2) matrices such as the Pauli matrices 
 

0 1 0 1 0

1 0 0 0 1
x y z

i

i
  

−     
= = =     

−     
 

 
can serve as operators that change the state of a spinor. The first Pauli matrix flips each 
spinor. 

1 0 1 1 0

0 1 0 0 1
x
       

= =       
       

   and   

0 0 1 0 1

1 1 0 1 0
x
       

= =       
       

 

 
Let's try the second Pauli matrix. 
 

1 0 1 0

0 0 0 1
y

i
i

i


−       
= =       

       
 and 

0 0 0 1

1 0 1 0
y

i
i

i


−       
= = −       

       
 

 

We expect to have the same physics for the x and y matrices. Comparing the pairs, 
we see the second one has an overall factor, which factor we call a phase factor. 
 

1 0

0 1
x
   

=   
   

, 

0 1

1 0
x
   

=   
   

 and 
2

1 0

0 1

i

y e



   

=   
   

, 
2

0 1

1 0

i

y e



−   

=   
   

, 

 
where we have expressed the phases using the Euler formula. Consider one of these. 
 

12

2

1 0

0 1

i

y

c
e

c




    

= =     
     

, i.e., 1 0c =  and 
2

2

i

c e


= . 

 
If we interpret the physics as c1*c1 and c2*c2, then the phase does not matter. It goes 
away. The value c1*c1 in quantum mechanics gives the probability that we have spin up, 
while c2*c2 gives the probability we have spin down. 
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A special result is obtained with the Pauli matrix labeled z. 
 

1 1 0 1 1

0 0 1 0 0
z
       

= =       
−       

   and   

0 1 0 0 0

1 0 1 1 1
z
       

= = −       
−       

. 

 
We get the same state back with either a plus or minus sign. When you get the same 
thing back, we say you have an eigenvector for the operator and the value in front is 
called the eigenvalue. 
 

If 

1 1

2 2

c c
A

c c


   
=   

   
, then 

1

2

c

c

 
 
 

 is an eigenvector of A  and   is the eigenvalue. 

 
Let's find the eigenvectors and eigenvalues for the Paul matrix labeled x. We want to 
solve the following eigenvalue problem. 
 

1 1

2 2

x

c c

c c
 

   
=   

   
, i.e., 

1 1

2 2

0 1

1 0

c c

c c


    
=    

     
 

 
The procedure is to first get everything on one side of the equation. 
 

1 1

2 2

0 1 1 0

1 0 0 1

c c

c c


      
=      

      
      and     

1

2

1
0

1

c

c





−   
=  

−   
 

 
Remember Cramer's formula from high school algebra? There, you want to solve two 
simultaneous linear equations. 

ax by e+ =  and cx dy f+ = , i.e., 

a b x e

c d y f

     
=     

     
 

You get 

e b

f ded bf
x

a bad bc

c d

−
= =

−      and     

a e

c faf ce
y

a bad bc

c d

−
= =

−  

 
Our eigenvalue problem has a vanishing numerator. So the denominator better vanish. 
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1
det 0

1





− 
= 

− 
 

 
 

2 1 0 − =  

 
 

1 =   

 
 

Now it's time to find the eigenvectors that go with these. We go back to 
 

1 1

2 2

0 1

1 0

c c

c c


    
=    

     
 

 
and insert the eigenvalues. 
 

1 1

2 2

0 1
1

1 0

c c

c c

    
= +    

     
     and     

1 1

2 2

0 1
1

1 0

c c

c c

    
= −    

     
 

 
 

For the first eigenvalue, we find 
 

1 2 1

2 1 2

0 1

1 0

c c c

c c c

      
= =      

       
, giving 2 1c c= . 

 
We could choose each to be 1, but we should be sure the total probability is 1. So we 
go with 

1

2

11

12

c
u

c

   
= =   

  
 

 
The probability that you will find spin up is 1/2 and the probability that you will find spin 
down is 1/2 also. We say the vector is normalized when the total probability is 1 as it 
needs to be. 
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For the other eigenvector we obtain 
 
 

1 2 1

2 1 2

0 1

1 0

c c c

c c c

      
= = −      

       
, giving 2 1c c= − . 

 
 
A satisfactory normalized eigenvector is 
 

1

2

11

12

c
v

c

   
= =   

−  
. 

 

Remember, if you multiply by an overall phase factor 
ie 

, the physics is still the same 

since you get the same equation relating the c-values and when finding c*c the phase 
factor goes away. 

 
PJ8 (Practice Problem). Derive Cramer's rule for two simultaneous linear equations. 

 

11 12 1a x a y c+ =  and 21 22 2a x a y c+ = , i.e., 

11 12 1

21 22 2

a a cx

a a cy

    
=    

    
 

 
Show 

1 12

2 22

11 12

21 22

c a

c a
x

a a

a a

=
     and     

11 1

21 2

11 12

21 22

a c

a c
y

a a

a a

=
. 

 
With three equations and three unknowns it gets more complicated. You deal with 
entities called cofactors and the procedure is more elaborate. 
 

PJ9 (Practice Problem). Find the eigenvalues and eigenvectors for y . 
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J4. Matrix Groups. 
 
The top group is the general linear group of n x n matrices. These are your n x n 
matrices that have inverses. 

 
 

It is understood that the binary operation for all the groups is your usual matrix 
multiplication. 
 
The C stands for complex numbers and R indicates real for the various matrix groups. 
The top floor (red) uses the complex numbers. The groups emanating from GL(n, C) are 
subgroups. Can you identify the subgroups of the subgroups? 

 


