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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter I Notes. Quantum Mechanics 

I1. Quantization. Starting in 1900, experimental results started forcing physicists to 

quantize physical quantities that are continuous in classical physics. 
 
1, Quantizing Oscillator Energy (1900) 

 
Max Planck (1858-1947)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 

 
Planck quantized the energy levels in atomic harmonic 
oscillators to explain radiation emitted from a glowing 
mass. His energy levels are given by 
 

nE nhf= , 

 
where n = 0, 1, 2, … The n refers to the nth state of 
vibration, f is the frequency of the lowest energy state, 
h is a constant called the Planck constant, and En is 
the energy of the nth level of vibration. 

 
Later, the formal calculation from quantum mechanics gave 

1
( )

2
nE n hf= +

. 

Planck postulated his equation. He did not derive it and he got it right except for the 

ground-state reference energy 0

1

2
E hf=

. Planck had zero for that, but the spacing 

of the energy levels agree: 
 

1adjacent n nE E E hf+ = − = . 

 
You are going to do for homework the calculation that won Planck the Nobel Prize in 
1918. You will use our statistical methods and the partition function. 
 
In classical physics an oscillator can have any energy. Energy is continuous. But to 
make things work in the microscopic world, Planck had to quantize energy. 
 
PI1 (Practice Problem). What are the dimensions for h? 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

 
2. Quantizing Light (1905) 

 
Albert Einstein (1873-1943)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 
Einstein, taking Planck seriously, stated that light 
carries off a quantum of energy should the 
oscillator drop from one level to another. So 
Einstein related light frequency to light energy. 
 

1adjacent n nE E E hf+ = − =  

 

photonE hf=  

 
He used this idea to explain the photoelectric 
effect. When light shines on a metal, if the 
frequency reaches a threshold, the light pops off 

electrons from the metal. 
 
The experimental graph is shown here 
where you plot the kinetic energy of the 
ejected electrons as a function of the 
frequency of the light hitting the metal. 
 
You need to reach a threshold 
frequency for K = 0, i.e., electron just 
pops off. Then higher frequencies kick 
the electron out where the electron 
moves. Einstein quantized light energy 
according to Planck’s formula. 
 
He then obtained a straight line to fit the 
data, where the slope is the Planck 
constant. 
 
Einstein called his quantized light the 
light quantum (“das lichtquant”). The 
chemist Gilbert Lewis coined the name 
“photon” in 1926, which has been used ever since. Lewis was inspired by Greek. The 
Greek word for light is “phos” and the Greek word for “of light” is photos. The word 
photography is also derived from Greek, along with the Greek word for writing. 
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3. Quantizing Angular Momentum (1913) 

 
Niels Bohr (1885-1962)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 
To understand the discrete wavelengths emitted 
from the excited hydrogen atom as it dropped to 
lower energy states Bohr quantized the angular 
momentum. 
 
He was then able to build on Einstein’s concept of 
light quanta. The exited hydrogen atom “relaxes” as 
the electron drops from a higher energy level to a 
lower one, giving off a photon with energy given by 
the difference in energy levels. 
 

final initialE E E hf = − =  

 
Bohr’s model, light the others, is semiclassical. Here 
an electron is in a circular orbit. Assign the electron 
mass m and speed v. Then the momentum is 
 

p mv= . 

 
The angular momentum is defined as the tangential 
momentum times the radius from the reference 
point. In this case, we use the center of the orbit. 
The angular momentum L is then 
 

L pr mvr= =  

 
Bohr had to first postulate that the orbiting electron does not radiate if it stays in the 
same orbit. This postulate contradicts electromagnetic theory since a circular path 
means acceleration and changing electric fields. The changing electric field should 
produce a changing magnetic field and so on so that energy is radiated away in the 
form of electromagnetic waves. The electron would then lose energy and spiral into the 
center. So classical physics indicates that atoms don’t exist and “you do not exist.”  
 
Bohr’s 1st postulate stops this, his 2nd postulate quantizes angular momentum, and his 
3rd is the energy-photon equation above. He derived the correct hydrogen spectrum. 
 
PI2 (Practice Problem). Show that the dimensions of h are also angular momentum. 
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Bohr’s quantization of angular momentum is given below. 
 

2

h
L n n


= 

 

 
Angular momentum is not continuous as in classical physics. Angular momentum 
comes in lump units related to the Planck constant. The unit is 
 

2

h




, 

 

i.e., the Planck constant divided by 2 . We refer to this unit as h-bar. 

 

I2. Modern Physics Revisited. We return to the Einstein formula that relates 

energy, momentum, and mass. 
 

 
 

2 2 4 2 2E m c p c= +  

 
 
 

Light travels at the speed of light. Therefore, according to the relativistic energy 
equation, the energy is all pc as the angle swings up to 90°. 
 

E pc=    (for light from relativity, Einstein) 

 
But we also have 
 

E hf=    (for light from the photoelectric effect, Einstein) 

 
Therefore, 
 

E pc hf= =  
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For a moment, consider 

2

2

2
1

mc
E pc hf

v

c

= = =

−  

 
We are including here the general energy equation for a particle with mass m. Note 
what happens to the denominator if the particle goes the speed of light. We are in 
trouble. But if the numerator conspires to give zero for light particles, then we have an 
indeterminate form and the energy can be anything. And indeed, photons can have all 
kinds of energy given by hf. Mathematics here guides us again. For photons, the mass 
of the particles must be zero. 
 
But light is a wave. So light satisfies the wave relation 
 

c f=  

 
In addition to our 

E pc hf= = . 

 
We can substitute for c to arrive at 

 

E p f hf= = . 

 
We then find a formula that relates the momentum to the wavelength through the Planck 
constant. 
 

p h =  

 
Let’s write this in the following form. 
 

h

p
 =
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Louis de Broglie (1892-1987) 
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 
Matter Waves (1924). Louis de Broglie postulated that the 
above equations also apply to matter where p = mv. 
 

h

p
 =

  

 

The Two Big Surprises 
 

1: Light, which was thought to be a wave classically is also a particle. 
 

2: A particle, which was thought to be matter classically is also a wave. 
 

So we pick this de Broglie relation as our simple key equation in the panel below for the 
physics of the microscopic world. 
 

Classical, Modern Physics, and Dirac 
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I3. Wave Properties. We step back to look at basic properties of waves as we will 

be needing wave concepts for our study of matter waves. 
 
We can illustrate all the basic properties using a sine wave. 
 

 ( , ) sin ( )x t A k x vt = −  

 
Remember our general wave traveling to the right? 
 

( , ) ( )x t f x vt = −  

 
Note the importance of the constant k as you cannot take the sine of meters. So the k is 
necessary to make the argument in the sine function dimensionless. What is the 
meaning of this k? 

 
Let u = x – vt as before. Then plot sin(u). 

 
Courtesy Wikimedia 

 
1. The Wave Number k. Take a snapshot at t = 0 to get a frozen wave. Then 
 

 ( , ) sin ( )x t A k x vt = −  becomes   ( ,0) sin( )x A kx = . 

 

If you now march from 0u =  to 2u =  along the u axis, you walk a wavelength 

x =  along the associated x axis. Remember, u kx=  when 0t = . Therefore,  

 

2k =    and   

2
k




=

. 
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The parameter k is called the wave number. It tells you how many wavelengths there 

are in an extent of 2 . If the actual x-wavelength happens to be 2 , then 1k = . If 

the wavelength is  , then the wave number 2k =  and so on. 

 
2. The Angular Velocity. Now freeze yourself in space and watch the wave at x = 0. 

 

 ( , ) sin ( )x t A k x vt = −  becomes   (0, ) sin( )t A kvt = − . 

 

We must have 2kvT = , where T  is the period, i.e., time for one cycle. 

 

Then 

2
2kv f

T


 = = 

, the angular velocity. 

 
I4. The “Back Door” to Quantum Mechanics.  The back door into quantum 

mechanics from classical mechanics is through the rare occurrence in classical physics 
of quantization. We have here a key to unlock the door to the new from the old. 
 

Let There Be Music! 
 

The secret path to quantum mechanics from 
classical mechanics is from the harmonics! 
 

2
n L

=

 

 
The above equation is our “fitting” equation. 
We fit n half-waves to L for the nth harmonic 
where n = 1, 2, 3 ,,, 

2L

n
 =

 

 
These are the allowed wave patterns - nothing in between. Now it is time for de Broglie. 
 

h
p


=
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We let our wave patterns apply to a particle trapped between the walls bouncing off 
them as it goes right, then left, then right again, etc. The energy is all kinetic: 
 

21

2
E mv=

 

 
We want to replace the velocity with momentum. 
 

2 2 21

2 2

m v p
E

m m
= =

 

 
This latter form is nice to memorize as it saves time to just write it down. 
 
With 
 

2L

n
 =

  

1

2

n

L
=

  

h
p


=

  

2

2

p
E

m
=

 

 
we find 
 

22 2 2 2
2

2 2

1 1

2 2 2 2 8

p h n n h
E h

m m m L mL

 
= = = = 

   

 
 
Discrete energies! The energy is quantized. 
 

2 2

28
n

n h
E

mL
=

 

 
This is often written in terms of h-bar as 
 

2 2 2 2 2 2 2 2 2 2

2 2 2 2

(2 ) 4

8 8 8 2
n

n h n n n
E

mL mL mL mL

  
= = = =
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The energy levels for a particle in a one dimensional box of width L is 
 

2 2

28
n

n h
E

mL
=

     or     

2 2 2

22
n

n
E

mL


=

. 

 
The standing waves for our harmonics are oscillating sine waves. We can write 
 

( , ) sin( )cos( )x t A kx t = . 

 
We are now in search of a differential equation for our “matter” wave. 
 
You can also consider two sine waves, one moving to the left and one to the right on 
our string. We choose A/2 for the amplitude for each wave. 
 

sin( ) sin( )
2 2

R L

A A
kx t kx t    = + = − + +

 

 
Now use trig identifies which we derived earlier in our course. 
 

( ) sin cos sin cossin      − = −  

 

( ) sin cos sin cossin      + = +  

 
Then 

 sin( ) sin( )
2

A
kx t kx t  = − + +

 

 

 sin( )cos( ) sin( )cos( )
2

A
kx t t kx  = −

 

 

 sin( )cos( ) sin( )cos( )
2

A
kx t t kx + +

 

 

( , ) sin( )cos( )x t A kx t =  
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This is the result we simply wrote down earlier. A superposition of two identical sine 
waves reflecting off the waves produces a pattern we call a “standing wave.” These 
standing waves form the harmonics. Note that k in our “wave function” can’t just be 
anything. The waves must be “fitted” to length L giving wavelengths 2L/n. 
 
Discrete wavelengths lead to discrete k values. Discrete wavelengths also lead to 
discrete momenta via de Broglie, which in turn require a discrete energy spectrum. 
 

2 2

28
n

n h
E

mL
=

 

 

I5. The Schrödinger Equation.  We are in search of a differential equation for our 

“wave function” developed in the previous section. 
 

Erwin Schrödinger (1887-1961) 
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 
Here is our “wave function” from the last section. 
 

( , ) sin( )cos( )x t A kx t =  

 
We also have conditions to be met. These involve 
the energies that go with our wave function. To 
emphasize this, we can write 
 
 

( , ) sin( )cos( )n nx t A k x t =  

 

2
n

n

k



=

     

2
n

L

n
 =

     n

n

h
p


=

     

2 2 2 2 2

2 28 2
n

n h n
E

mL mL


= =

     

 
Let’s dwell on this some more. We state that for both light and matter, we can write 
 

h
p


=

   E hf=  

 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

The de Broglie relation can also be expressed using the wave number k. 
 

2

h k
p h k

 
= = =

 

For energy, since 2 f = , we have 2
f




=

 and E hf = =  

 

The following are elegant: E =  and p k=  

 

Since, 

2

2

p
E

m
=

 in our “bouncing-off-the-walls” scenario, we can use E =  and 

p k=  to obtain 

2 2

2

k

m
 =

 

 
Summary: We want a differential equation for which 
 

( , ) sin( )cos( )x t A kx t =  

 
Is a solution, with the condition 

2 2

2

k

m
 =

. 

 
Let’s get started by taking a derivative or two. We can get that k-squared by taking two 
derivatives with respect to x. 

2
2

2
k

x





= −

  

 
To get the linear term in omega, we take one time derivative 

sin( )sin( )A kx t
t


 


= −

 . 
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Big Problem! We did not get the function back again. This is not good. 
 
But If we alter the wave function to have an imaginary component, we will get the 
desired result. A subtitle of this section could be “Why We Need the Imaginary 
Number i in Quantum Mechanics.” 

If ( , ) sin( ) i tx t A kx e  −= , then 
i

t





= −

  

You might ask why we didn’t use ( , ) sin( ) i tx t A kx e  +=  with the plus in 

front of the omega. The answer there is that if we promote the spatial part to an 
exponential with the plus and minus on the k, then we get 
 

( , ) ( )ikx i t

R x t e e f kx t + − = − , 

( , ) ( )ikx i t

L x t e e g kx t − − = + , 

where the one to the right is 
ikxe+ , which is the standard convention. 

 
Summary. So far we have 

( , ) sin( ) i tx t A kx e  −=      

2
2

2
k

x





= −

      
i

t





= −

  

To get 

2 2

2

k

m
 =

 

we note 

i
t





=

           and          

2 2 2 2

22 2

k

m x m





− =

   

 
The differential equation must then be 
 

2 2

22
i

t m x

  
= −

   
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If we include the general case with potential energy, then 

2

2

p
E V

m
= +

 and 

2 2

22
i V

t m x

 


 
= − +

  . 

 
The “F=ma” of quantum mechanics! 

 
This is the time-dependent Schrödinger equation in one dimension. For time 
independent potentials V(x,t) = V(x), We have the “standing matter waves.” 
 

( , ) ( ) i tx t x e   −=  

Then, 

2 2

22
i V

t m x

 


 
= − +

   

becomes 
 

22

2

( ) ( )
( ) ( )

2

i t i t

i t
x e x e

i V x x e
t m x

 


 



− −

−
       = − +

   

 

2 2

2

( )
( ) ( ) ( ) ( )

2

i t i t i td x
i i x e e V x x e

m dx

  
  − − −− = − +

 

 
You can put everything on one side, factor out the exponential and use the arbitrary 
argument that everything multiplying it must be zero. Or in this case you can simply 
divide by the exponential since it can never be zero. 
 

2 2

2

( )
( ) ( ) ( )

2

d x
x V x x

m dx


 = − +

 

 

2 2

2

( )
( ) ( ) ( )

2

d x
E x V x x

m dx


 = − +
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This is the time-independent Schrödinger equation in 1 dimension. It is often written as 
follows. 
 

2 2

2

( )
( ) ( ) ( )

2

d x
V x x E x

m dx


 − + =

 

 
The time-dependent form is 
 

2 2

22
i V

t m x

 


 
= − +

   

 
We can easily get the three-dimensional case by recalling 

 

2 i j k i j k
x y z x y z

             
  = + +  + +   

        
 

 
2 2 2

2

2 2 2x y z

  
 = + +

    

 
The corresponding equations in three dimensions are  
 

2
2

2
V E

m
  −  + =

 

 

2
2

2
V i

m t


 


−  + =

  

 

where now the wave function   and potential V  can in general depend on x, y, z, 

and t. Remember your physics as a check here. We want 
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2 2 2 2 2 2

2

x y zk k k

m


+ +
=

 

 
 

Here is a quick way to remember the Schrödinger equation 
 
 

2
2

2
V i

m t


 


−  + =

  

 
 
There is a convention to make the following assignments, where we promote energy 
and momentum to derivative operators. 
 

E i
t


→

      and     p i→−  . 

 
Then 

 

2

2

p
V E

m
 

 
+ = 

 
 

 
 

gets you the Schrödinger equation. 


