
Theoretical Physics 
Prof. Ruiz, UNC Asheville  
Chapter H Homework. Statistical Mechanics 
 
HW-H1. Two Quantum States Part I. 
 
a) The Sketch. Sketch a dotted horizontal line to represent a zero reference energy 
point. Then draw a short solid horizontal line below this reference and label this line with 

energy 1
 = − . Then draw a short solid horizontal line above your reference and 

label this line with energy 2
 = + . 

 

b) The Partition Function. At temperature T  give the partition function for this system.  
 

c) Occupation Numbers. Then give the most probable occupation numbers 1
n  and 2

n  

for each of these states if the total number of particles is some large value 

1 2
N n n= + . 

d) Energy. Show that the average energy 
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+  can be expressed as 

hyperbolic function as follows: tanhE
kT


= − . Then give a sketch of the average 

energy as a function of temperature. 
 
HW-H2. Two Quantum States Part II. This problem is a continuation of HW-H1. 
 
a) What are the occupation numbers and average energy in the limit as the temperature 

approaches absolute zero, i.e., 0T → . 

 
b) What are the occupation numbers and average energy in the limit as the temperature 

approaches infinity, i.e., T → . 

 
c) Compare your results for (e) and (f) in terms of entropy, i.e., the disorder of the 
system, using words. Why do you expect your answers for (e) and (f) to come out the 
way they do in terms of entropy? 
 

Proceed to the Next Page for HW-H3. 
 



HW-H3. Infinite Quantum States. Consider Max Planck's discrete energy levels given 

by n
E nhf= . Give the partition function as a summation from zero to infinity for 

these states.  
----------------------------------------------------------------------------------------------------------------- 
This section need not be included in your homework write-up. 
 
To evaluate your partition function, note that your sum is of the form 
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= . Then 
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Each series has an infinite number of terms, each getting smaller and smaller since 

1
x

r e
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=  . Subtracting your two infinite sums, 
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If you have never seen this, it is highly recommend that you derive the result for a finite 

sum of n terms: 
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----------------------------------------------------------------------------------------------------------------- 
Use the following derivative trick in order to calculate your average energy. 
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Your final answer will be the prize: 

1

hf
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hf
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−
. 

 
You get the classical result by making "h" small, just as you get the classical formulas 
from relativity by making "c" large. What is the limit for the energy when h goes to zero if 

you do a Taylor's expansion using 1
z

e z + ? The equipartition theorem in classical 

thermodynamics says you get / 2kT  for each degree of freedom, i.e., each way the 

system can absorb energy. Remember the ideal gas with 3kT/2? Here, an oscillator has 
one degree for kinetic energy along the direction of the "spring" and one degree for its 
potential energy. So you should get kT for your classical average energy 


