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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter H Notes. Statistical Mechanics 

H1. Combinatorics. There are 5 people in a family. They are given two tickets to 

the movies. How many different ways can the family decide on the 2 people to go to the 
movies? The answer is below. Note that we divide by 2 since the order does not count 
as the two family members get into the car to go to the movies. 
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Blaise Pascal (1623-1662)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 
The Pascal Triangle provides a prescription for 
determining the binomial coefficients in (a+b)n, which 
coefficients are relevant to our question above. What 
is the pattern? 
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The Pascal Triangle 

 

 
 

Courtesy Wikimedia 
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H2. The Statistical Problem and Stirling's Approximation. We are 

interested in the problem of placing n1 particles in energy state 1, n2 particles in energy 

state 2, and so on. How many ways  can you do this? The answer is 
 

1 2 3

!

! ! ! ...

N

n n n
 =

 

where we have the conditions 
 

1 2 3 ...N n n n= + + +   for the total number of particles and 

 

1 1 2 2 3 3 ...E n n n  = + + +  for the total energy. 

 

The problem is this. We would like to maximize  given the constraints that the total 

number of particles N is held constant and the total energy E is constant. The form for  

looks intimidating. But if we maximize the natural logarithm of , that will have the same 
result. So we look at 
 

1 2ln ln ! ln ! ln ! ...N n n = − − − . 

 
This looks friendlier as we have a sum instead of products. But we still do not like 
factorials. Note this trick 

 

ln ! ln1 ln 2 ... lnn n= + + + . 

 
The factorial is replaced by a sum. But there is 
still more simplification for large n. 
 
This brings us to the mathematician Stirling 
and his approximation for large n. It is 
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We will derive a variant of this approximation. 
 
Sir James Stirling (1692-1770) 
Painting by Sir Peter Lely 
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Courtesy Wikigallery.org. 
 
We return to 

 

ln ! ln1 ln 2 ... lnn n= + + +  

 
and check out the plot below. 

 
 

Courtesy UC Davis ChemWiki by University of California, Davis 
 
We can approximate this by the areas of the strips where the width of each strip is 1. 
 

ln ! (ln1)(1) (ln2)(1) ... (ln )(1)n n= + + +  

But this is the integral 
1

ln
n

xdx  to a very good approximation. This integral can be 

done by a cute trick we can arrive at from looking at these derivatives. 
 

ln 1d x

dx x
=
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=

        

( ln ) 1
ln ln 1
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= + = +
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 and our integral is 11
ln ( ln )

n n
xdx x x x= −  

 
 and 
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11
ln ( ln ) ( ln ) (1ln1 1) ln 1

n n
xdx x x x n n n n n n= − = − − − = − +  

 
 
For large n we have 
 

1
ln ! ln ln

n

n xdx n n n  −  

 
If we go back to the Stirling formula 
 

! 2 2
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 

 

 
Then 
 

1
ln ! ln( 2 ) ln ln (ln 2 ln ln )

2

n nn n e n n n n e n − = − + + +
 

 

1
ln ! ln( 2 ) ln (ln 2 ln ln )

2

n nn n e n n n n n − = − + + +
 

 
Our approximation includes the first two terms, which are larger than the last group. The 

only one in this group you might be concerned with is ln n  but lnn n  easily wins as 

being far greater when n is large. So, we will be using our version of the Stirling 
approximation is 
 

ln ! lnn n n n −  

 
Are you still worried? Then, let's use a calculator and pick a small number compared to 
zillions of particles in different energy levels. How about n = 10? 
 

ln10! ln3,628,800 15.1= =  

 

ln 10ln10 10 10 2.30 10 13.0n n n− = − =  − =  

 
For n = 50 
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ln50! 148.48=  

 

ln 50ln50 50 50 3.91 50 145.6n n n− = − =  − =  

 
Our problem restated: 
 
Maximize: 
 

1 2ln ln ! ln ! ln ! ...N n n = − − −  with the constraints 

 

1 2 3 ...N n n n= + + +   for the total number of particles and 

 

1 1 2 2 3 3 ...E n n n  = + + +  for the total energy. 

 

With Stirling: ln ! lnn n n n − , we need to maximize 

 

1 1 1 2 2 2ln ln ( ln ) ( ln ) ...N N N n n n n n n = − − − − − −  

 
Note that  
 

1 2( ...) ( ) 0N n n N N− − − − − = − − − =  

 
So we have 
 

 1 1 2 2ln ln ln ln ...N N n n n n = − − −  

 
 
PH1 (Practice Problem). Find the number of ways that nine people at a picnic can be 
split into the following categories of activities: two of the nine are walking in the woods, 
three are talking at the picnic table, and four are playing a lawn game. 
 
PH2 (Practice Problem). Find the number of ways that nine particles can be in the 

following energy levels: two of the nine are in energy level 1 = , three are in energy 

level 2 = 2, and four are in energy level 3 = 3 What is the total energy for this system 
of twelve particles? What is the average energy per particle? 
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H3. The Method of Undetermined Multipliers. We will need this method, 

which we introduce through practice problems. 
 
Joseph-Louis Lagrange (1736-1813) 
Courtesy www.scientific-web.com 
 
PH3 (Practice Problem). Before using the 
Lagrange Method of Undetermined Multipliers, 
let’s first do a max-min problem using the 
standard approach. Find the largest area you 
can enclose with a fixed amount of fence given 
by L = 2x + 2y. 

 
Let A = A(x,y). 
Then find A as 
A(x) only and 
set dA/dx = 0. 
Solve for x. You 
will get two 
solutions: x = 0 

and x = L/4. The second one is your square 
with x = y = L/4 as expected. 

 
PH4 (Practice Problem). Maximize the Area using the Lagrange Method of 
Undetermined Multipliers. You will do the same problem now by considering 
 

( , ) 0
A A

dA x y dx dy
x y

 
= + =

   

 
If the dx and dy were independent, we could set each partial to zero. In the standard 
approach you get rid of the y and write an equation where the derivative of A with 
respect to x is set to zero. Here is another way. Use 
 

( , ) 0dA x y dL− =  and 
0

A L A L
dx dy

x x y y
 

     
− + − =        

. 

 

Though dx and dy are not independent, we pick   so 

 

0
A L

y y


 
− =

   
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Since the dx can be thought of as an arbitrary differential, we have 
 

0
A L

x x


 
− =

   

 
The beauty of the method is we can write the pair 
 

0
A L

x x


 
− =

     and   
0

A L

y y


 
− =

  . 

 

The price we pay is that we introduced   , which must be found. But that is worth the 

deal. Use 
 

A xy=  and 2 2L x y= +  

 

To finish this problem. You will find 2x y = = . 

 

H4. Maximize . Here is our challenge. What is the most probable arrangement of ni 

particles in each of the various energy levels i. We want to maximize 
 

1 1 2 2

1 2 3

!
ln ln ln ln ln ...

! ! ! ...

N
N N n n n n

n n n

 
 =  − − − 

 
 

 
where we have the constraints 
 

1 2 3 ...N n n n= + + +   for the total number of particles and 

 

1 1 2 2 3 3 ...E n n n  = + + +  for the total energy. 

We can't proceed to do a max-min problem by considering all the idn  independent 

because they are not. The two constraints fix two of them as the others are free to vary. 
So we cannot start with 
 

1 2 3

1 2 3

(ln ) (ln ) (ln )
(ln ) ... 0d dn dn dn

n n n

     
 = + + + =

    
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This problem is due to our two constraints. Our first constraint involves the total number. 
 

1 2 3 ... 0dN dn dn dn= + + + = . 

 
If we start varying the ni, the last one is determined since the sum of the numbers must 
be N. Our other constraint is 
 

1 1 2 2 3 3 ... 0dE dn dn dn  = + + + = . 

However, we can introduce two undetermined multipliers   and   and write 

 

(ln ) 0d dN dE  − − = , 

 

(ln )
0i

i i i i

N E
dn

n n n
 

    
− − = 

   
 . 

 
We choose the undetermined multiplies to “kill” the two dni that are constrained. The 
price we pay is that we will have to solve for these undetermined multipliers at some 
point. We can then state for all the ni 
 

(ln )
0

i i i

N E

n n n
 

   
− − =

   . 

 

First find 1 1 2 2

1 1

(ln )
( ln ln ln ...)N N n n n n

n n

  
= − − −

  . 

 
The only nonzero partial derivative will be this one. 
 

1 1

1 1

(ln )
( ln ln )N N n n

n n

  
= −

   

 

Note that 
1 1

( ln ) ( ln ) (ln )(1)
N N

N N N N N
n N n N

  
= = +

   . giving 
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1

( ln ) ln 1N N N
n


= +

  

 
The other partial derivative we need is 

 

1 1 1

1

( ln ) ln 1n n n
n


= +

  

 
We use these to find our original partial derivative. 

 

1 1 1 1

1 1 1 1

(ln )
( ln ln ) ( ln ) ( ln )N N n n N N n n

n n n n

    
= − = −

     

 

1 1

1

(ln )
(ln 1) (ln 1) ln lnN n N n

n

 
= + − + = −

 . 

 
Then for 
 

1 1 1

(ln )
0

N E

n n n
 

   
− − =

    

 
We have the needed pieces 
 

1

1

(ln )
ln lnN n

n

 
= −

    

1

1
N

n


=

  from 1 2 3 ...N n n n= + + +  

 

1

1

E

n



=

  from 1 1 2 2 3 3 ...E n n n  = + + +  
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Summary: 

1 1 1

(ln )
0

N E

n n n
 

   
− − =

    

 

1

1

(ln )
ln lnN n

n

 
= −

  

1

1
N

n


=

  

 

1

1

E

n



=

  

 

We get for 
1 1 1

(ln )
0

N E

n n n
 

   
− − =

   , the equation 

 

1 1ln ln 0N n  − − − = . 

 
From this, 

1 1ln lnn N  − = − −  

 

1
1ln

n

N
 = − −

 

 

11n
e

N

 − −=
 

 

1

1n Ne  − −=    

 

We can do this for any ni so we replace the subscript 1 with i: 
i

in Ne
 − −

=
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H5. Evaluating the Undetermined Multipliers  and . 
 

i

in Ne
 − −

=
 

 

1. Evaluating   

 

1 2

1 2 ... ...N n n Ne Ne   − − − −= + + = +
, i.e., 

 
 

i

i

N N e
 − −

= 
 

 

i

i

N e N e
 −−= 

 

 

1 i

i

e e
 −−= 

 

 

1 1
i

i

e
e Z





−

−
= 

  

 

The denominator is called the partition function Z. Then 

i

in Ne
 − −

=
 can 

be written as shown below. 
 

 

i

i

e
n N

Z

−

=
        

1 2 ...i

i

Z e e e
  − − −= = + +
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2. Evaluating  . We meet up with Pascal again. He was a super interdisciplinary guy: 

a mathematician, a physicist, and philosopher. We see him in this section as a physicist. 
One of the things he is known for in philosophy is "The Wager," where he does a 
probability analysis to convince others that it pays off to believe in God. 
 

 
Blaise Pascal (1623-1662). Pascal's Law.  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 

 

F Mg Vg Ahg
P gh

A A A A

 
= = = = =  

 
 

Pascal's Law gives the pressure due to the weight of a fluid or gas at a depth h. 
 

Consider measuring from the ground up so 
that 
 

z h H+ = , 

 
a constant. Then, 
 

0dz dh+ =  

 

dh dz= −  

 
 

We would like to measure from the ground up rather from a fixed point high in the sky at 
a distance H up. Then, 
 

P gh=      and     dP gdh gdz = = −  

 

Using the ideal gas law PV NkT= , we can write /P NkT V= . 
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In summary, we have 

P gh=      dP gdz= −      

NkT
P

V
=  

 
Let m be the mass of one particle in the gas. Then 
 

NmkT Nm
Pm kT kT

V V


 
= = = 

 
. 

 
For a gas at constant temperature we only worry about a change in density due to the 
height. 

kT
dP d

m
=  

Putting together the pieces dP gdz= −  and 

kT
dP d

m
=  we obtain 

 

kT
d gdz

m
 = −  

 
 

d mg
dz

kT




= −      and     

0 0

1 zmg
d dz

kT







= −   

 
 

0 0
ln

zmg
z

kT




 = − , which leads to 

0

ln
mg

z
kT




= −

 and finally 

 

0

mgz

kTe 
−

= . 

Since mgz =  (potential energy), then our


 in 

i

i

e
n N

Z

−

=  must be 

1

kT
 = . 
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H6. Entropy. 

U Q W =  −  

 
Since heat and work depend on path, one often writes the differentials with a slash, 
usually through the top. See the slash below in the heat and work terms.  
 

 
 

But we can fix the work to obtain a good differential so that when integrated, we are 
path independent. The result is the change in volume. Take any path you want with this 
set up below and we get a "perfect" differential, namely, delta V. 
 

W
V

P


= 

. 

 
Now the delta does NOT depend on path. It is simply the change in volume. Can we fix 
Q? Yes. Consider 

Q U P V =  +   

Use the ideal gas law. 

PV nRT=    and   

3

2
U nR T = 

 

 

3

2

nRT
Q U P V nR T V

V
 =  +  =  + 

 

 

3

2

Q U P V nR T nR
V

T T T T V

   
= + = + 

 

 
We can integrate this and get an answer that is path independent. The fixed 
arrangement introduces a new variable S called the entropy: 
 

Q
S

T


= 
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PH5 (Practice Problem). Integrate the above to show for the ideal gas that the entropy 
change is 

2 2
2 1

1 1

3
ln ln

2

T V
S S nR nR

T V
− = +

. 

We can now write 
 

dU TdS PdV= −  since /S Q T =  . 

 

Note that 

U
T

S


=

  

 
The above is macroscopic where we have properties for the gas as a whole such as 
temperature, volume, pressure, energy, and entropy. 
 
In our study of statistical mechanics we found 
 
 

(ln ) 0d dN dE  − − =  

 

1

kT
 =

 

 

(ln )dE d dN =  −  and 

1
(ln )dE d dN



 
=  −

 

 

1

(ln )

E
kT




= =

   

 
 

Big profound connection coming up since energy E is energy U. 
 
 

U
T

S


=

  and (ln )

E
kT


=

   leads to lnS k=  . 
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The second law of thermodynamics involves the entropy. Since things tend to the most 

probable, we want the largest   and thus the largest lnS k=  . 

 

If you combine two systems with 1  and 2 , then you get a total number of ways, 

i.e., total number of microstates, given by 
 

1 2 =   . 

 
This means the entropy adds: 
 

1 2 1 2ln ln( ) ln lnS k k k k=  =   =  +  , i.e., 

 

1 2S S S= + . 

 
The second law is sometimes stated as the total entropy of the universe always 
increases. Another form is that you must waste some energy. Still another variant is that 
there is no such thing as a perpetual motion machine. 
 

H7. The Laws of Thermodynamics. 
 

First Law: Conservation of Energy 

U Q W =  −  

Second Law: Total Entropy Increases 

/S Q T =   
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U T S P V =  −   

 
 
Remember our engines? You put heat in from a higher temperature, do work, and expel 

heat at a lower temperature. The first law states that h cQ W Q= + . The second law 

states that you must waste some of your energy, i.e., you will have 0cQ  . The 

efficiency therefore will always be less than 1: 
 

 

h

W

Q
 =

 

 
 

h c

h

Q Q

Q


−
=

 

 
 

1 1c

h

Q

Q
 = − 

 

 


