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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter G Notes. The Ideal Gas Law and Thermodynamics 
 

G1. Review: The Ideal Gas Law. The following apply to the ideal gas. 

-------------------------------------------------------------------------------------------------------------------- 
Boyle's Law. Pressure of a gas is inversely related to volume at constant temperature. 

 

1
P

V
 and 1 1 2 2PV P V=  as constant temperature. 

 
When temperature is used with the equations in this section, 
the Kelvin scale is used, i.e., T = Celsius Temperature − 273. 
 
Robert Boyle (1627-1691) 

Images from  the School of Mathematics and Statistics, Univ. of St. Andrews, Scotland 
--------------------------------------------------------------------------------------------------------------------

Charles's Law. Volume of a gas is proportional to temperature at constant pressure. 

V T  and 
1 2

1 2

V V

T T
=

 as constant pressure 

 
and we use the absolute Kelvin temperature scale. Consider 
this as a definition for the absolute temperature scale: as 
you cool the gas down at constant pressure, the volume 
shrinks to zero as temperature goes to zero. 
 
Jacques Charles (1746-1823) 

-------------------------------------------------------------------------------------------------------------------- 
Gay-Lussac's Law. Pressure of a gas is proportional to temperature at constant volume. 

 
 

P T  and 
1 2

1 2

P P

T T
=  at constant volume. 

 
Think of this as an alternative definition for temperature on 
the absolute scale. As you lower the pressure at constant 
volume, the temperature lowers, both heading towards zero. 
 
Joseph Gay-Lussac (1778-1850) 
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We can incorporate all these laws in the form: 
 

1 1 2 2

1 2

PV P V

T T
=

 

 

 The chemists write the ideal gas law as 

 
The physicists often like to write 

 
The definition of the mole is 
 

A

N
n

N
=

, where 
236.022 10AN x= is called Avogadro's number. 

 

Since APV nRT NkT nN kT= = = , the physicist's constant is related to the 

chemist's constant as 

A

R
k

N
=

. 
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G2. "Derivation" of the Ideal Gas Law 
 
The ideal gas law is an excellent example of a combination of experimental results. We 
will attempt to "derive" this law since our course is called "Theoretical Physics." 

 
Sir Isaac Newton (1642-1727) 
 
Let's see what we can derive from Newton's Second 
Law 
 

F ma= . 

 
Bur first, let's summarize what have we accomplished so 
far in our theoretical analysis of fundamental laws. 
 

 
We started with the following: Newton's Second Law, Newton's Universal Law of 
Gravitation, Coulomb's Law, and Special Relativity. 
 

F ma=                  2G

GMm
F

r
=                  2E

kQq
F

r
=                  " "x ct=  

 

We used the first, third, and fourth to derive the Maxwell equations. From the Maxwell 
equations we derived the existence of electromagnetic waves, i.e., we obtained optics. 
 

 

F ma=        2E

kQq
F

r
=        " "x ct=      => E&M and Optics 

 
 
 
Now we will attempt to arrive at thermodynamics from Newton's Second Law. 
 
 

F ma=        =>  Thermodynamics 
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We will consider a box containing a gas. Below is the basic idea of a discrete 
distribution of velocities and a continuous one. 
 

 
 
The total probability must be 1 in each case, i.e., the probability that a given gas particle 
has some velocity is 1. Therefore, for the discrete case, 
 

1i

i

N

N
= , which is consistent with i

i

N N= . 

 
For the continuous case, the total area under the curve must be 1. 
 

( ) 1f v dv = . 

 
Classically, one integrates from zero to infinity. We are justified in doing this even 
knowing relativity since our particles no way approach the speed of light. Therefore, our 
function f(v) will drop to zero before we even get close to the speed of light and it is 
easier to integrate to infinity when you are dealing with exponential-type functions. We 
will not get into such details here anyway and at times leave the integration limits off. It 
is understood that you integrate over all velocities. 
 
We will consider a continuous distribution of velocities for our gas particles. The neat 
thing about our analysis is that we will never need to worry about the exact form of the 
function f(v). Watch! 
 

Consider a box with N particles and volume V . The pressure is defined as force per 

unit area and the force is the change in momentum with respect to time: 
 

/P F A=      and     /F dp dt= . 
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A slanted region is shown below where some particles are heading towards the area 
shown on the floor. From the geometry at the lower right we will determine the 
probability for a particle to be traveling along the slanted region at velocity v. 
 

The volume element below is cosA dl . We need another piece. The change in 

momentum when a particle coming in along the slant with velocity v bounces off the 

bottom floor. The change in momentum is 2 cosmv  . 
 
The following is from Derek L. Livesey, Atomic and Nuclear Physics (Waltham, MA, 

Blaisdell Publishing, 1966). Let the probability distribution for the angle   be ( )g  . 

 

 
 

/2

0
( ) 1g d



  =           2

2 sin
( ) sin

2

r r d
g d d

r

  
   


= = . 

 

   
1 2 cos 1

cos ( ) sin
2

N mv
dP A dl f v dv d

V dt A


  

   
=         

 

 
 

  
1

cos ( ) sin 2 cos
2

N dl
dP f v dv d mv

V dt
   

   
=    

   
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  2( ) cos sin
Nm dl

dP v f v dv d
V dt

  
 

 =   
 

 

 

2 2( ) cos sin
Nm

dP v f v dv d
V

     =      

 

/2
2 2

0 0
( ) cos sin

Nm
P v f v dv d

V



  


=    

 
/2

3
2

0

cos

3

Nm
P v

V



 
= − 

 
 

 

2 1
0 ( )

3

Nm
P v

V

 
= − − − 

 
 

 

2 1

3

N
P mv

V
=      and     

2

3

N
PV mv=  

 
We can define temperature by the total kinetic energy of the gas particles. This total 
energy is equal to the average kinetic energy the particles times the number of particles, 
 

2

2

mv
KE N= . 

 

Since we want the assignment 
2

3

N
PV mv NkT= = , we find 

21 3

2 2
mv kT= . 

 
In summary, we have (with our definition of temperature) 

 

PV nRT=      and     PV NkT=      with     
21 3

2 2
mv kT= . 
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G3. The First Law of Thermodynamics and Specific Heats 
 
We will phrase the first law of thermodynamics in terms of our ideal gas. The first law of 
thermodynamics is the law of conservation of energy: The change in energy of a system 
is equal to the heat that flows into the gas minus the work that is done by the gas. 
 

U Q W = −  

 

 
 
We can therefore also write the first law as 
 

U Q W = −  

 
Here is an application using the definition of the specific heat at constant volume. 

 

1
V

V

Q
c

n T




  

 

Q U P V = +       and     VQ U =   
 

21 3 3

2 2 2
U N mv NkT nRT= = =  

 

1 1 1 3 3

2 2
V

V

Q Q nR T
c R

n T n T n T

  
 = = =

    
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Here is an application using the definition of the specific heat at constant pressure. 
 

1
P

P

Q
c

n T




  

3

2
VQ U P V nR T P V nc T P V =  +  =  +  =  +   

Since we want constant pressure, it is better to have a P  in the above. We note 
 
 

PV nRT=    and   ( )PV nR T P V V P =  =  +  . 

 

Then  P V nR T V P =  −   and 

 

( )V VQ nc T nR T V P n c R T V P =  +  −  = +  −  . 

 

1
P V

P

Q
c c R

n T


 = +

      since     0P = ' 

. 
Summary 

PV nRT=      and     PV NkT=      with     
21 3

2 2
mv kT= . 

 

21 3 3

2 2 2
U N mv NkT nRT= = =  

 

U Q P V = −       and     Q U P V = +   

 

1
V

V

Q
c

n T




  ,   

1
P

P

Q
c

n T




 ,   and   P Vc c R= +  

 

For an ideal gas we have     

3

2
V

R
c =    and   

5

2
P

R
c = . 
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G4. Four Thermodynamic Processes 
 

1. Isometric, Isochoric (constant volume): 0V = .  

 

0W P dV= =  

 

2. Isobaric (constant pressure): 0P = . 

 
 

2 2

1 1
2 1( )

V V

V V
W P dV P dV P V V= = = −   

 
3. Isothermal (constant temperature): 0T = . 

 

2 2 2

1 1 1

1V V V

V V V

nRT
W P dV dV nRT dV

V V
= = =    

 

2

1

2

1

ln ln
V

V

V
W nRT V nRT

V
= =

 

4. Adiabatic (no heat flow): 0Q = .Note that we can't say constant heat since heat is 

not a "regular" variable like P, V, and T. Heat exchange, like work, depends on a path 
we take in the PV plane. Heat and work are not intrinsic properties of the gas. But 
energy is. From the earlier section, write 

VQ U P V nc T P V =  +  =  +  . Remember 

3

2
U nRT= . 

 

( )V VQ nc T nR T V P n c R T V P =  +  −  = +  −   

 
These equations are 
 

VQ nc T P V =  +     and   PQ nc T V P =  −  . 

 

For 0Q =  we can write 

 

Vnc T P V = −     and   Pnc T V P =  . 
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P

V

nc T V P

nc T P V

 
= −

       leads to     
P

V

c V dP

c P dV
= −

. 

 

We define 
P

V

c

c
 =

. Then, 

V dP

P dV
 = −  

 

dP dV

P V
= −  

 

2 2

1 1

1 1P V

P V
dP dV

P V
=−   

 

2 2

1 1

ln ln
P V

P V
P V= −  

 

2 2

1 1

ln ln
P V

P V
= −

 

 

2 2

1 1

ln ln
P V

P V

−
 

=  
 

 

 

2 2

1 1

P V

P V

−
 

=  
 

   and   
2 1

1 2

P V

P V


 

=  
 

 

 

1 1 2 2P V P V = , i.e., PV const =  

PG1 (Practice Problem). Show that the work done by a gas in an adiabatic expansion 
from volume V1 to V2 is 
 

1 1

2 1 2 2 1 1

1 1

V V P V PV
W const

 

 

− + − + − −
= = 

− − 
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G5. An Engine. An engine with PV nRT= , has the following cycle. 

 
Fill in the table; find the efficiency. 
 

Calculate W P V =   first (far 

right column). It is the area under 
the graph for each phase. Note the 
no change in volume for b to c and 
d to a. Then do energy (1st column). 
 

Temperatures: 0bT T=  (given) and 

02a cT T T= = , 04dT T=  from 

PV nRT= . 

 

  

3

2
U nR T =   

 

 

Q U P V = +   

 

W P V =   

 
a to b 

 
0

3

2
nRT−  0

5

2
nRT−  

0 0 0PV nRT− = −  

 
b to c 

 
0

3

2
nRT  0

3

2
nRT  

0  

 
c to d 

 
0 0

3
2 3

2
nR T nRT=  

05nRT  0 0 02 2PV nR T=  

 
d to a 

 
0 0

3
2 3

2
nR T nRT− = −  

03nRT−  0  

Efficiency: 
in

W

Q
 = , where W is the net work performed and Qin is the input heat. The 

net work done is the area inside the box: 0 0 0W PV nRT= = , which you can also arrive 

at by summing all the W  values in the last column in our table. The inQ  is equal to 

the sum of the two positive Q  values in the middle column. Therefore, 

 

0 0 0W PV nRT= =  and 0 0 0

3 13
5

2 2
Q nRT nRT nRT = + = . 

The efficiency is 
0

0

2

(13 / 2) 13in

nRTW

Q nRT
 = = = . 


