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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter F Notes. "Let There Be Light" 

F1. The Wave Equation 
 

A function ( )f x  is shown with a peak at f(0). Denote this by writing (0)f peak= . If 

we shift this function to the right by a distance d , then the new function ( )h x  must be 

( ) ( )h x f x d= − . Here is how you can check this rule. Is the peak now at x d= ? Does 

( )h d peak= ? We check this below the figure. 

 

(0)f peak=    and   ( ) ( )h x f x d= −  

 

( ) ( ) (0)h d f d d f peak= − = =  

 
It checks out. Do you 
remember doing this often 
in trigonometry? If you shift 

the cosine by / 2  to the 

right, you get the sine. 
 

sin cos( )
2

x x


= −  

 
The above relation also tells 
you that the sine of an 
angle in a right triangle 
equals the cosine of its 
complement. 
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Since ( )f x d−  is our shifted function to the right by a distance d , we can let 

d vt=  to obtain a traveling function to the right. Let's search for a differential equation 

for this function, i.e., we want a differential equation such that our traveling wave 

( )f x vt−  is the solution. Common practice is to use   for a wave. So we write 

 

( , ) ( )x t f x vt = − , defining u x vt= − . Note that 1
u

x


=


 and 

u
v

t


= −


. 

 
Then we take derivatives in our quest for the "magic" differential wave equation, 
 

 

( , ) ( ) ( ) ( ) ( ) ( )
1

x t f x vt f u df u u df u df u

x x x du x du du

  −  
= = = =  =

   
 

 

( , ) ( ) ( ) ( ) ( )
( )

x t f x vt f u df u u df u
v

t t t du t du

  −  
= = = =  −

   
. 

 
 
We can now put together the following differential equation from the above. We find 
 
 

( , ) 1 ( , )x t x t

x v t

  
= −

 
 and write 

( , ) ( , )1R Rx t x t

x v t

  
= −

 
, 

 
 

adding the subscript R for "Right" to emphasize that this wave is traveling down the x 
axis in the positive direction. 

 
But for the wave traveling to the left, we must have the same equation with the velocity 
in the negative direction. This reverses the sign in front of v since u in that case would 
be u = x + vt with f(u) = f(x+vt). 
 

( , ) ( , )1L Lx t x t

x v t

  
= +

 
. 

 
 
This is not acceptable because now we have two differential equations and there is 
nothing special about right or left. We want a differential equation where the sign does 
not matter. So we proceed to the second derivative. 
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We start with 

 

( , ) ( )x t f x vt = −    and   u x vt= − , 

 

( , ) ( )x t df u

x du


=


   and   

( , ) ( )x t df u
v

t du


= −


, 

 
and take the second derivatives with respect to x and t. 
 
 

2 2 2

2 2 2

( , ) ( ) ( ) ( )x t df u d f u u d f u

x x du du x du

  
= = =

  
 

 
 

2 2 2
2

2 2 2

( , ) ( ) ( ) ( )x t df u d f u u d f u
v v v

t t du du t du

   
= − = − =    

. 

 
This leads to 
 

2 2

2 2 2

( , ) 1 ( , )x t x t

x v t

  
=

 
 

 
 
Note that when you square plus or minus v that you get positive v squared. This 
differential equation applies to waves moving to the left or to the right. This is the wave 
equation in one dimension. The general solution is a combination of a wave moving 
right and one moving left: 
 

( , ) ( ) ( )x t Af x vt Bg x vt = − + +  

 

For the wave equation in three dimensions where ( , , , )x y z t = , we have 

 
2 2 2 2

2 2 2 2 2

1

x y z v t

      
+ + =

     
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With the del operator  , we can write this very elegantly. First note that since 

 
 

i j k
x y z

    
  + +

  
, 

 
we have 

i j k i j k
x y z x y z

             
 = + +  + +   

        
 

 
2 2 2

2 2 2x y z

  
 = + +

    

 
 
We make the shorthand definition 
 

2   

 

The symbol 
2  is also called the Laplacian operator. 

 
So 

2 2 2 2

2 2 2 2 2

1

x y z v t

      
+ + =

     

 
 
can be neatly written as 
 

2
2

2 2

1

v t





 =


 

 
 
You can remember where the v goes from dimensional analysis. Since distance equals 
velocity times time, your velocity has to go with the time t. Since we have the second 
derivative, think of distance as being squared and time as being squared. So you need 
the velocity squared. 
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F2. "Let There Be Light." Watch the video for a discussion of the variations below. 

 

 
Photos Courtesy www.zazzle.ca for Custom T-Shirts 
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Photo Courtesy www.cafepress.com 

 
For the free space 
Maxwell equations 
we are far away 
from any charge 
sources and 
currents. Thus, we 
set 

0 =  and 

0J
→

= . 

 
 

The free-space 
equations have 
beautiful symmetry 
and contain the 

 

0

E




→

 =
 

0B
→

 =  

0 0 0

E
B J

t
  

→
→ → 

 = +


 

B
E

t

→
→ 

 = −


 

Free Space Equations 

0E
→

 =  

 

0B
→

 =  

0 0

E
B

t
 

→
→ 

 =


 

B
E

t

→
→ 

 = −

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secret about light. We play with these equations to see if a wave equation is supported. 
This is an example of theoretical physics at its best. We are in search of a discovery 
using theory only. 

We are in search for a second order differential equation so we go for a second 
derivative with respect to time. 

Take a derivative of the equation 0 0

E
B

t
 


 =


 with respect to time. 

2

0 0 2
( )

E
B

t t
 

 
 =

 
 

2

0 0 2

B E

t t
 

 
 =

 
 

Now it's time to use the Maxwell equation with the 

B

t




, i.e., ( )

B
E

t


 = −


, 

B
E

t


= −


. 

Substituting this into our last equation gives us 

2

0 0 2
( )

E
E

t
 


 − =


 

2

0 0 2
( )

E
E

t
 


  = −


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Let's focus on ( )E  . We do this by first calculating the curl of E . 

( ) ( ) ( )
y yx xz z

x y z

i j k

E EE EE E
E i j k

x y z y z x z x y

E E E

  

       
 = = − − − + −

        

Then 

( )

y yx xz z

i j k

E
x y z

E EE EE E

y z z x x y

  

  
  =

  

   
− − −

     

. 

Let's do the x-component first. 

( )
y x x z

x

E E E E
E

y x y z z x

         = − − −            
 

2 2 2 2

2 2
( )

y x x z

x

E E E E
E

y x y z z x

      = − − +
         

Flip the order of the derivatives for the first and last term to obtain 

2 2 2 2

2 2
( )

y x x z

x

E E E E
E

x y y z x z

      = − − +
        . 
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2 2 22

2 2
( )

y x xz

x

E E EE
E

x y x z y z

     = + − −
         

2 2

2 2
( )

y x xz

x

E E EE
E

x y z y z

      = + − −        
 

We now add to the right side zero in the form of 

2 2

2 2

x xE E

x x

 
−

 
: 

2 2 2

2 2 2
( )

yx x x xz

x

EE E E EE
E

x x y z x y z

       = + + − − −          
. 

 
 

2( )x xE E E
x

    =  −
 

 

 
Note that we have discovered the following powerful identity: 

2( ) ( )E E E  =  −  

But 0E =  in free space. Therefore: 

2( )x xE E  = −  

 
There is nothing special about the x-direction. So the complete vector equation is 
 

2( )E E  = − ,  consistent also from our above identity. 

 
Putting it all to together, our equation 

2

0 0 2
( )

E
E

t
 


  = −


 becomes 

2
2

0 0 2

E
E

t
 


 =


. 
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Voilà! Compare this equation 

2
2

0 0 2

E
E

t
 


 =


 to the wave equation 

 

2 2

2 2 2

( , ) 1 ( , )x t x t

x v t

  
=

 
 

 

 It is the wave equation for the electric field with 0 02

1

v
 = . 

 

Guess what Maxwell found for the speed 
0 0

1
v

 
=

 when he put in the numerical 

values for 0  and 0 ? He found a value close to the then known value of the speed of 

light. This was in 1861. He concluded that light was an electromagnetic phenomenon. 
We will summarize our results below replacing the speed with the speed of light symbol. 
 

2
2

0 0 2

E
E

t
 


 =


, where 

0 0

1
c

 
=

. 

Therefore, 

2
2

2 2

1 E
E

c t


 =


 

 
One can derive the same equation, but with the magnetic field replacing the electric 
field. It is faster now because we can use the powerful identity we derived, thus taking a 
shortcut. We would get. How, can we write this result down by clever comparison with 
the electric field case? 
 

2
2

0 0 2

B
B

t
 


 =


. 

 

Once again we find 
0 0

1
c

 
=

. 
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F3. Electromagnetic Waves  

 
The axes at the left are defined  with the usual association 

of the unit vectors i


, j


, and k


 with x , y , and z  

respectively. Note also that we have a right-handed system 
with 

i j k
  

 = . 

For  0 sin ( )E E k z ct i


= − , one can show that B  is 

along the y  axis with  0 sin ( )B B k z ct j


= − , i.e., in phase with E
→

 and that 

/o oE B c= . The solution begins on the next page. 

Courtesy P.wormer, Wikimedia 

 

 
 

Adapted from Philip Ronan, Wikimedia 
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Start with a sinusoidal electric field vector traveling along the z axis. We will assume 
that the E field has a transverse and longitudinal, i.e., parallel, component. We orient 
the x axis so that the x axis aligns with the transverse component, i.e., the component 
perpendicular to the direction of propagation. Then we can write in general 

 

 ( )sin ( )x zE E i E k k z ct
→  

= + − , 

 

 ( )sin ( )x y zB B i B j B k k z ct 
→   

= + + − + , 

 

where   allows the magnetic field oscillations to be out of 

phase with respect to the oscillating electric fields. We will 

show that 0 = . 

 

a) Using 0E
→

 = , gives 

 

 ( )sin ( ) 0x zE i j k E i E k k z ct
x y z

→        
 = + +  + − = 

   
 

 

   { sin ( ) } { sin ( ) } 0x zE E k z ct i i E k z ct k k
x z

→     
 = −  + −  =

 
 

 

 (0)( ) cos ( ) 0zE i i kE k z ct k k
→    

 =  + −  =  

 

 cos ( ) 0zkE k z ct− =  

0zE =  in order to make this equation true always. 

 

b) Using 0B
→

 =  will similarly give 0zB = . 

 

c) We will calculate 

B
E

t

→
→ 

 = −


 by first working with E
→

 . Note that 
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 sin ( )xE E k z ct i
→ 

= −  

 

as we have shown that 0zE = . Then, 

 

 sin ( ) 0 0x

i j k

E
x y z

E k z ct

  

→   
 =

  

−

 

 

 cos ( )xE kE k z ct j
→ 

 = −  

 

For the magnetic field we have so far  ( )sin ( )x yB B i B j k z ct 
→  

= + − +  

 

 ( )cos ( ) ( )x y

B
B i B j k z ct kc

t


→
 

− = − + − + −


 

 

 ( )cos ( )x y

B
kc B i B j k z ct

t


→
 

− = + − +


 

 
We comparing the two equations, which must be equal. 

 

 cos ( )xE kE k z ct j
→ 

 = −  

 

 ( )cos ( )x y

B
kc B i B j k z ct

t


→
 

− = + − +


 

 

Then, 0xB = , 
x

y

E
B

c
= , and 0 = . 


