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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter E Notes. Differential Form for the Maxwell Equations 

E1. The Divergence Theorem 
 
We are going to derive two important theorems in vector calculus in this chapter. The 
first one is the Divergence Theorem. We consider a vector field E and proceed to do a 
closed surface integral of this field. 

E dA  

 
You recognize this as the left side of our first Maxwell equation. The vector field can be 
any vector field. To simplify, we will pick the field to be in the z direction. 

 
This way, it is easier to 
understand the basic 
idea. We can easily 
generalize to the case 
where the vector field 
has all 3 components. 
 
We will do the surface 
integral over this small 
finite cube. Then we will 
take limits to shrink the 
cube to an infinitesimal 
cube. 
 
The result will be the 
divergence theorem. To 
remind ourselves that E 
is up, we use the z 
subscript for E: 
 

 ( , , )zE E x y z= . 

 

( , , ) ( , , )z zE dA E x y z z x y E x y z x y = +    −    

 

Note the minus sign at the bottom surface because E points up and the A points down 
there. Refer to the figure. On the four vertical side panels the E field skims the surfaces 
so that the dot product with each of those surface elements gives zero. 
So we have 
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 ( , , ) ( , , )z zE dA E x y z z E x y z x y = +  −   . 

 
At this point, the right side is a surface integral. Now comes the trick. The partial 

derivative 
zE

z




 is almost staring us in the face. So set up the partial derivative 

zE

z




 

and prepare to integrate it with respect to dz , which does not change anything. 

 

 ( , , ) ( , , )z zE x y z z E x y z x y z
E dA

z

+ −   
 =

  

 
This promotes a surface integration to a volume integration when we take the limits to 
get differentials. 

z

V

E
E dA dxdydz

z


 =

  . 

For the general case with  
 

( , , ) ( , , ) ( , , )x y zE E x y z i E x y z j E x y z k
  

= + + , 

 
we have 

yx z

V

EE E
E dA dxdydz

x y z

  
 = + + 

   
  . 

 
Now it is convenient to define the operator which we call the del operator: 
 

i j k
x y z

    
  + +

    so that 

yx z
EE E

E
x y z

 
 = + +

   . 

 

Then we have the nice notation 
V

E dA Edxdydz =    and finally 

V

E dA EdV =   ,   where dV dxdydz= . 
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E2. Stoke's Theorem 
 
We consider a vector field B and proceed to do a closed line integral of this field. 
 

B dl  

 
You recognize this as the left side of one of our Maxwell equations. The vector field can 
be any vector field. To simplify, we will pick the field to be in the x-y plane. 
 

 
 

B dl =  

 

( , , ) ( , , ) ( , , ) ( , , )x y x yB x y z x B x x y z y B x y y z x B x y z y + +  − +  − 

 

 ( , , ) ( , , ) ( , , ) ( , , )y y x xB x x y z B x y z y B x y y z B x y z x = + −  − + −  
 

 ( , , ) ( , , ) ( , , ) ( , , )y y x x
B x x y z B x y z B x y y z B x y z

x y x y
x y

 + − + − =   −  
 

 
This trick lets us promote the line integral to a surface integral. The derivative and 
integral for the extra variable does not change things. 
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This leads from B dl =  

 

 ( , , ) ( , , ) ( , , ) ( , , )y y x x
B x x y z B x y z B x y y z B x y z

x y x y
x y

 + − + − =   −  
 

 
to 

y x

A

B B
B dl dxdy

x y

 
 = − 

  
   

 
Do you recognize the cross product arrangement? Consider 
 

( ) ( ) ( )y z z y z x x z x y y xA B i A B A B j A B A B k A B A B
  

 = − + − + − . 

 
Now take the A vector as the del vector operator: 

 

( ) ( ) ( )
y yx xz z

B BB BB B
B i j k

y z z x x y

     
 = − + − + −

      . 

 
We have the z component: 
 

( )
y x

z

A A

B B
B dl dxdy B dxdy

x y

 
 = − =  

  
    

 

( )z

A

B dl B k k dA
 

 =     

 

( )
A

B dl B d A
→

 =     

 
This is Stoke's Theorem. 
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E3. The Maxwell Equations in Differential Form 
 
We will now transform the integral forms of the Maxwell equations into differential forms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. The First Maxwell Equation 
 

0

Q
E dA


 =  

 
Express the left side using the Divergence Theorem: 
 

V

E dA EdV =    

 
Express the right side with the volume charge density 
 

0 0V

Q
dV



 
=   

 
The more rigorous analysis leads us to write 
 

0

( ) 0
V

E dV



 − = . 

 

0

Q
E dA


 =  

0B dA =  

0 0 0
Ed

B dl i
dt

  


 = +  

Bd
E dl

dt


 = −  
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Then we state that since the volume integration is arbitrary, i.e., we can take different 
volumes, the integrand must vanish to make the equation true in general. 

 
Arbitrary volumes mean that the following 

 

0

( ) 0
V

E dV



 − =  

 
implies 

0

0E



 − =

, 

 
which leads to 
 

0

E



 =

. 

 
This the differential form for Gauss's Law, which in turn is equivalent to Coulomb's Law. 

 
 
2. The Second Maxwell Equation 

 
This one is easy after doing the first. Since 
 

0

Q
E dA


 =  becomes 

0

E



 =

, 

 

0B dA =  becomes 0B = . 

 
No magnetic field lines can originate at a point such that a next flux pierces out of the 
enclosed surface. This is a most elegant statement that there are no magnetic 
monopoles. The magnetic field tends to loop and the presence of a north and south pole 
for a magnet means we have a cancellation effect. There is no such thing as magnetic 
charge, at least so far as we know. 
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3. The Third Maxwell Equation 

 
What about this one? 

 

0 0 0
Ed

B dl i
dt

  


 = +  

 
We use Stoke's theorem for the left side. 

 

( )
A

B dl B dA =     

 

Then we need to express the right side 0 0 0
Ed

i
dt

  


+  as an area integral. We 

use the definition of the current density. If you forgot about this from your intro physics 
course, we are led to it here. The mathematics guides us and suggests the following 
definition. 
 

i JA=    and in general   
A

i J dA=   

The flux  E  is no problem because an area is involved in its definition: 

 

E EA =    and in general   E

A

E dA =  . 

 
Putting this all together: 
 

0 0 0( )
A A A

d
B dA J dA E dA

dt
    =  +    . 

 
We move the derivative inside the integral since the integration is over area and has 
nothing to do with time. We write as a partial derivative as E depends on x, y, z, and t. 

0 0 0( )
A A A

E
B dA J dA dA

t
  


  =  + 

    

We rewrite 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

0 0 0( )
A A A

E
B dA J dA dA

t
  


  =  + 

    

 
as 

0 0 0( ) 0
A

E
B J dA

t
  

 
 − −  = 

  
  

 
Since the surface area chosen is arbitrary, the integrand must vanish to make this true 
in general. This gives us the third Maxwell equation. 
 

0 0 0

E
B J

t
  


 = +


 

 
4. The Fourth Maxwell Equation 
 
The last Maxwell Equation is easy since it is similar and simpler than the third. Since 
 

0 0 0
Ed

B dl i
dt

  


 = +    becomes   0 0 0

E
B J

t
  


 = +


, 

 
 

Bd
E dl

dt


 = −    becomes   

B
E

t


 = −


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The Maxwell Equations in Integral Form (left) and Differential Form (right) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E4. Uses of the del Operator 
 

i j k
x y z

    
  + +

  
 

 
1. The Gradient 
 

When the del operator acts on a scalar function ( , , )x y z , we get a vector function 

called the gradient. 

i j k
x y z

  


    
 = + +

    

 
 

PE1 (Practice Problem). Calculate the gradient for each of the following. 
 

2 2 2( , , )f x y z x y z= + +  

 
2( , , ) 2g x y z xy yz= +  

 
2( , , ) 2 3 sinh x y z x y z= + +  

 

0

Q
E dA


 =  

0B dA =  

0 0 0
Ed

B dl i
dt

  


 = +  

Bd
E dl

dt


 = −  

 

0

E



 =

 

0B =  

0 0 0

E
B J

t
  


 = +


 

B
E

t


 = −


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2. The Divergence 
 

When the del operators acts on a vector field A
→

 as a dot product, you have the 
divergence. 

 

yx z
AA A

A
x y z

 
 = + +

    

 
PE2 (Practice Problem). Calculate the divergence for each of the following. 
 

A x i y j z k
  

= + +  

 

2 2 2B x i y j z k
  

= + +  

 

cos sinC x i y j
 

= +  

 
 

3. The Curl 
 

When the del operators acts on a vector field A
→

 as a cross product, you have the curl. 
 
 

      
( ) ( ) ( )

y yx xz z
A AA AA A

A i j k
y z z x x y

     
 = − + − + −

       

 
 

PE3 (Practice Problem). Show that 
 

x y z

i j k

A
x y z

A A A

  

  
 =

    
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PE4 (Practice Problem). Calculate the curl for each of the following vector fields. 
 

A x i y j z k
  

= + +  

 

B y i x j
 

= −  

 

2C x j


=  

 
 
 
 

 
 
 


