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Theoretical Physics 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter A Notes. Taylor Series, Rotation Matrix, Groups 
 

A1. Taylor Series 

Brook Taylor (1685-1731)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland  
 
The Taylor series is a way to represent a function f(x) as a 
sum of powers of x. It is one of the basic tools of the 
physicist and is important in a study of any branch of 
physics. Here is the idea. 
 

2 3 4

0 1 2 3 4( ) ... ...n

nf x a a x a x a x a x a x= + + + + + +  

 
We can shape the coefficients like a sculptor. For 
example,  
 

0(0)f a= . 

By taking derivatives and then setting x = 0 we can determine the coefficients na . Take 

the first derivative to arrive at 
 

(1) 2 3 1

1 2 3 4'( ) ( ) 2 3 4 ... ...n

nf x f x a a x a x a x na x −= = + + + + +  

 
(1)

1(0)f a=  

 
Taking the 2nd derivative gives 
 

(2) 2 2

2 3 4"( ) ( ) 2 3 2 4 3 ... ( 1) ...n

nf x f x a a x a x n n a x −= = +  +  + − +  

 
(2)

2(0) 2f a=  

 
You can see the pattern here: 
 

(3)

3 3 3(0) 3 2 3 2 1 3!f a a a=  =   =  
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( ) (0) !n

nf n a=  

 
Therefore, the “sculpted” coefficients are found from 
 

( ) (0)

!

n

n

f
a

n
=  

We can then write 

( )

0 0

(0)
( )

!

n
n n

n

n n

f
f x a x x

n

 

= =

= =  . or 

 
(3) ( )

2 3"(0) (0) (0)
( ) (0) '(0) ... ...

2! 3! !

n
nf f f

f x f f x x x x
n

= + + + + + +  

 
This is also called the Maclaurin Series. The Taylor Series has a more general form, 
where you can expand about any point x = a: 
 

(3) ( )
2 3"( ) ( ) ( )

( ) ( ) '( )( ) ( ) ( ) ... ( ) ...
2! 3! !

n
nf a f a f a

f x f a f a x a x a x a x a
n

= + − + − + − + + − +

 
Note that the same trick works here as long as you evaluate the function at the point a. 
 
PA1 (Practice Problem). Find the following Taylor series for the functions about x = 0.  
 

It is good to memorize the results below from their patterns. 
 

2 3 4( 1) ( 1)( 2) ( 1)( 2)( 3)
(1 ) 1 ...

1 2 1 2 3 1 2 3 4

n n n n n n n n n n
x nx x x x

− − − − − −
+ = + + + + +

     
 

 

2 3 4 5

1 ...
2! 3! 4! 5!

x x x x x
e x= + + + + + +  

 
2 4 6

cos 1 ...
2! 4! 6!

x x x
x = − + − +  

 
3 5 7

sin ...
3! 5! 7!

x x x
x x= − + − +  
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Here is the solution for sin x . We start with 

( )

0 0

(0)
( )

!

n
n n

n

n n

f
f x a x x

n

 

= =

= =   

or 
(2) (3) ( )

(0) (1) 2 3(0) (0) (0)
( ) (0) (0) ... ...

2! 3! !

n
nf f f

f x f f x x x x
n

= + + + + + +  

So our function ( ) sinf x x= . First find 
(0) (0) (0) sin(0) 0f f= = = . Then 

take the first derivative,  
(1) ( ) cosf x x=  to arrive at 

(1) (0) cos(0) 1f = =  and 

continue along these lines. See the table below. 
 

(0) ( ) sinf x x=  
(0) (0) sin(0) 0f = =  (0) 0f =  

(1) ( ) cosf x x=  
(1) (0) cos(0) 1f = =  

(1) (0)f x x=  

(2) ( ) sinf x x= −  
(2) (0) sin(0) 0f = − =  

2
(2) (0) 0

2!

x
f =  

(3) ( ) cosf x x= −  
(3) (0) cos(0) 1f = − = −  

3 3
(3) (0)

3! 3!

x x
f = −  

(4) ( ) sinf x x=  
(4) (0) sin(0) 0f = =  

4
(4) (0) 0

4!

x
f =  

(5) ( ) cosf x x=  
(5) (0) cos(0) 1f = =  

5 5
(5) (0)

5! 5!

x x
f =  

Now add that last column so that 
 
(3) ( )

2 3"(0) (0) (0)
( ) (0) '(0) ... ...

2! 3! !

n
nf f f

f x f f x x x x
n

= + + + + + +  becomes 

 

3 51 1
( ) ...

3! 5!
f x x x x= − +  

 
Can you psyche out the next few terms by the patterns? 

 
3 5 7 9 11

( ) sin ...
3! 5! 7! 9! 11!

x x x x x
f x x x= = − + − + − +  
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PA2 (Practice Problem).  Start with 
 

2 3 4

0 1 2 3 4( ) ( ) ( ) ( ) ( ) ... ( ) ...n

nf x a a x a a x a a x a a x a a x a= + − + − + − + − + − +

 
and show that 

 
(3) ( )

2 3"( ) ( ) ( )
( ) ( ) '( )( ) ( ) ( ) ... ( ) ...

2! 3! !

n
nf a f a f a

f x f a f a x a x a x a x a
n

= + − + − + − + + − +

 
using steps similar to that which we did for the expansion about the origin.
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A2. A Use of the Taylor Expansion 

Here is a summary of basic laws of motion in physics. Note that we do not have a 
complete theory of relativistic quantum mechanics at this time. That is why we include 
the question mark. 
 

Classical and Modern Physics 

 
 
The Dirac equation is not usually touched on in undergraduate courses. Dirac’s work 
inspired Richard Feynman (as well as Schwinger and Tomonaga)  to develop quantum 
electrodynamics, an extension of Dirac's relativistic quantum mechanics for the 
electromagnetic interaction. 

 
Brook Taylor again (1685-1731)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 
Here is our British mathematician Taylor again, this time 
looking more formal in his fancy wig.  
 
When a fine theory like Newtonian mechanics is 
established, yet found to need improvement, a new theory 
comes along to extend it. At the same time the new theory 
embraces the old, meaning, that in the proper limit, we 
can recover the old theory. This is an elegant example of 
the beauty of physics. In other words, you recover 
Newtonian mechanics from Einstein's relativistic 

mechanics when you slow your speeds down. Slowing down means getting at least 
slower than 1/10 the speed of light. 
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By the way, "theory" in physics is used like "theory" in "music theory," an established 
body of knowledge backed up by observation and analysis. However, a theory can have 
limitations, e.g., Newton's theory, "classical mechanics," applies to the world of the large 
and slow moving. 
 

Define 

v

c
 = . Imagine some calculated quantity ( )f  from relativity:  

 

2 3
(1) (2) (3)( ) (0) (0) (0) (0) ...

2! 3!
f f f f f

 
 = + + + +  

 

For 0.1 = , the first relativistic correction is on the order of 1/10, the second 1/100, 

etc. The classical term is (0)f . Two examples of relativistic formulas are those for 

Lorentz contraction and time dilation, which appear below.  
 

2

0 1L L = −  

 

0

21

T
T


=

−
 

 
These can be written in the following forms.  
 

2 2 1/2

0

1 (1 )
L

L
 = − = −

 and 

2 1/2

2
0

1
(1 )

1

T

T




−= = −
−

 

 

PA3 (Practice Problem). Use your results from PA1 for expanding (1 )nx+ , where 

2x = −  and 
1
2

n = or 
1
2

n = − to give the coefficients for the first few terms of each 

expansion below: 
 

2 2 1/2

0

1 (1 )
L

L
 = − = −  and 

2 1/2

2
0

1
(1 )

1

T

T




−= = −
−
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A3. Matrices 
 
Here is a review of the basic rules for matrix multiplication. 
 

Multiplying Two Matrices 
 

11 12 11 12 11 11 12 21 11 12 12 22

21 22 21 22 21 11 22 21 21 12 22 22

a a b b a b a b a b a b

a a b b a b a b a b a b

+ +     
=     

+ +     
 

 
 

Multiplying a Matrix and a Column Matrix 
 

u a b x ax by

v c d y cx dy

+       
= =       

+       
 

 
 
PA4 (Practice Problem). Consider the following three matrices called the Pauli 
matrices. 
 

0 1 0 1 0

1 0 0 0 1
x y z

i

i
  

−     
= = =     

−     
 

 

What do you get for x y  ? 

What about multiplying these in reverse order: y x  ? 

 
Try the same for another pair. 
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A4. The Rotation Matrix 

 

There are two axes above. The prime axes are rotated with respect to the original x-y 

system. The secret in relating ( ', ')x y  to ( , )x y  is to construct that cute rectangle you 

see in the above figure. Note that 
 

' cos sinx x y = +  and ' cos siny y x = − . 

Write these as 

' cos sinx x y = +  

 

' sin cosy x y = − +  

 
We can define the following matrix 
 

cos sin
( )

sin cos
R

 


 

 
=  

− 
. 

 
In matrix notation we can write 
 
 

' cos sin
( )

' sin cos

x x x
R

y y y

 


 

       
= =       

−       
 . 
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A5. Trig Identities 
 
Now the fun begins and we see our first example of the power of theoretical physics. 
We will proceed to derive complicated trig formulas in one step. 

Remember those days, perhaps in high school, when you first encountered complicated 
trig identities involving the sines and cosines of sums and differences of angles. Here 
you can derive these quickly. The combined rotation 
 

cos sin cos sin
( )

sin cos sin cos
R

   
 

   

   
+ =    

− −   
 

 
has to be equal to 

cos( ) sin( )
( )

sin( ) cos( )
R

   
 

   

+ + 
+ =  

− + + 
. 

 

Multiply the matrices and your 11a  matrix element is your cosine identity for 

cos( ) + . The element 12a  takes care of sin( ) + . The results are: 

 

cos( ) cos cos sin sin     + = −  

 

sin( ) cos sin sin cos     + = + . 

 

Replace   with −  and you arrive at the formulas involving the differences. 

Remember that the cosine is an even function, i.e., cos( ) cos − = , and the sine is 

an odd function such that: sin( ) sin − = − . 

 

cos( ) cos cos sin sin     − = +  

 

sin( ) cos sin sin cos     − = − + . 

 
This is an example of the "magic" of theoretical physics. You might say these are 
Feynmanesque derivations. We get the result in a couple of lines, while the high school 
proof goes on and on with intricate diagrams and multiple algebraic steps that can take 
over a page. 
 

In fact, we are not even afraid of the triple-angle sum, cos( )  + + . Just multiply 

another matrix and pick off the appropriate part. This is another characteristic of 
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Feynman - using theoretical techniques to do even more general and more difficult 
proofs with relative ease. 

 
A6. Visualization of a Trig Identity 
 
For the angle-difference case, our rotation diagram provides us with a nice picture to 
visualize the pieces found in the identities. 
 

 
 

PA5 (Practice Problem).  Use the above formulas to derive the result for tan( ) − . 

Then replace   with −  to arrive at the identity for tan( ) + . Arrange your results 

to look like the standard forms: 
 

tan tan
tan( )

1 tan tan

 
 

 

−
− =

+
 

 
and 

 

tan tan
tan( )

1 tan tan

 
 

 

+
+ =

−
. 
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A7. Groups 
 

Group: A set of elements { , , , ...}G a b c d=  with a binary operation “  ”, i.e., 

represented by a dot satisfying the following conditions. The symbol a G  means 

that a  is an element in G . 

 

 1. Closure: for a G  and b G , a b G  . 

 

 2. Association: ( ) ( )a b c a b c  =   . 

 

 3. Identity Element: I G  such that a I a = . 

 

 4. Inverse Element: 
1a G−   such that 

1a a I− = . 

 

The group is an Abelian group if commutation holds: a b b a =  . 

 

Note that we can prove I a a =  from a I a =  and the other group properties. In 

words, we are saying the we can prove that our right identity element is also a left 
identity element from the group properties. When one says an element is an identity 
element, this means both left and right identity, i.e., using it on the left side or right side. 
 
We will work backwards starting with the result and transforming it into something we 
know is true. Then you can copy the steps backwards as the proof. 
 

I a a =  

 
1 1I a a a a− −  =   

 
1( )I a a I−  =  

 

I I I =  
 

This last equation is true because you can consider the Identity working on the right 
side. 
 
PA6 (Practice Problem). In a similar way prove that the inverse of "a" works as an 
inverse on the left side too, i.e., the inverse is a right and left inverse. It doesn't matter 

on which side it appears in the binary operation. In summary, prove 
1a a I−  = . 
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A8. The Military Group and the Square Root of Minus One 

 
PA7 (Practice Problem). Below is a delightful example from a magazine called 
Quantum: Alexey Sosinsky, "Marching Orders", Quantum Vol. 2, No. 2, 7 (1991). 
 
Consider a finite group of 4 elements: G = {A, B, L, R}  
 A: Attention (maintain the direction you are facing)  
 B: 'Bout Face (turn around)  
 L: Left Face (turn to face left)  
 R: Right Face (turn to face right) 
 
We will call this the “military group.” Consider doing 
an ‘Bout face and then standing at Attention. We 
write this as AB, placing the first instruction at the 
far right. The net result is AB = B, i.e., ‘Bout face. 
Complete the multiplication table shown here. 
 
Are all the conditions for a group met? Is the group 
Abelian? 
 

PA8 (Practice Problem). Have you ever pondered about the meaning of 1i = −  long 

ago? Well, you now have profound understanding since our “military group” has an 
isomorphism, i.e., one-to-one correspondence, to another small group involving 
imaginary numbers. Check out the group  
 

{1, 1, , }G i i= − −  under the binary operation of 

multiplication. 
 
Construct the multiplication table for its elements. Compare 
with the “military group,” identifying the isomorphism for the 
elements A, B, L, and R. So, what does it mean to multiply 

by 1 by 1i = − ? 

 
Label each of these A, B, R, and L to explicitly describe the isomorphism. 
 
Since you have complete understanding of the "Military Group" and this group is 

isomorphic to {1, 1, , }G i i= − −  under the binary operation of multiplication, you have 

complete understanding of 1i = − . It is a rotation! You are led by the isomorphism to 

define a complex plane and place 1i = −  after making a 90° turn (i.e., left turn) from 1 

on the real axis. 
 

PA9 (Practice Problem). Evaluate 
100i , 

101i  and 
102( )i− . How does the isomorphism 

with the "Military Group" allow you to determine these quickly in your head? 


