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I. Fourier Analysis 
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We have seen in previous chapters two 
sets of notes. These appear in Fig. I-1 
below. The musician's scale represented is 
the major scale. What we call the 
"physicist's scale" comes from the modes of 
vibration on strings and in pipes. 

First, we started with the major scale as 
a given. We then found that the esthetics of 
the scale had some underlying mathe-
matical simplicity in terms of frequency 
ratios. Second, we studied the standing-
patterns in strings and pipes. We 
discovered a very natural grouping of 
frequencies: f, 2f, 3f, 4f, 5f, etc., the 
harmonic series (the "physicist scale" in Fig. 

I-1). Now we will see that this scale of 
nature has esthetic application in music. 

The harmonic series has important 
applications in harmony. The tones of the 
harmonic series blend well together. They 
serve as a guide when a composer wants 
to choose many notes to sound  
harmoniously when played together. Think 
of it this way. Use the musician's scale to 
pick out a melody. Then use the harmonic 
series to assist you in finding a group of 
notes (called a chord) that can be played as 
background to a note or subset of notes in 
your melody line. 

 
 
Fig. I-1. The Scales of the Musician and Physicist. 

 

 
 

A melodic line is written on music paper 
from left to right just like the way we read 
and write. The notes change in time. Refer 
to the musical scale at the left in Fig. I-1. 
The notes appear on the musical staff from 
left to right. On the other hand, 
harmonization occurs at the same point in 
time. Many instruments may participate in 
playing different notes simultaneously. 
These supporting notes are arranged 

vertically underneath the melody note since 
they are played together. The harmonic 
series in Fig. I-1 above is written in this 
vertical fashion. We give an example of 
harmonization from an orchestral excerpt 
from the great master Tchaikovsky in Fig. I-
2. The use of the harmonic series is 
apparent. The excerpt is from the second 
movement of his Fourth Symphony, 
completed in 1878. 
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The excerpt in Fig. I-2 has been stripped 
of any musical markings for loudness. It has 
also been transposed slightly so that the 
fundamental matches that found in Fig. I-1. 
It is important for you to refer to Fig. I-1 and 

check the harmonics listed below. Please 
do this before continuing. The resulting 
sound with so many harmonics is very full 
and satisfying. Note the omission of the 
jazz-sounding seventh harmonic. 

 
 
Fig I-2. Excerpt of Tchaikovsky's Fourth Symphony Transposed for Harmonic Analysis. 
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Complex Waves 
 

Fig. I-3 below illustrates three waves, 
each one getting more complex. The first, 
Fig. I-3a, is a sine wave. This is the 
simplest type of wave. It corresponds to a 
wave of "nature." The standing waves we 
find on strings and in pipe's are sine waves. 
The sine wave is sometimes called a pure 
wave. The sound of a sine wave is 
innocent, simple, pure in tone. 

The second wave, Fig. I-3b, is a 
complex periodic wave. Any periodic 
waveform that is not simple (not a sine 

wave, i.e., non-sinusoidal) is a complex 
periodic wave. These waves have well-
defined frequencies (pitches). Different 
repetitive shapes or waveforms give us the 
rich variety of timbres we hear. 

The third wave, Fig. I-3c, is an aperiodic 
complex wave. Aperiodic complex waves 
do not repeat. These can be crashes, 
explosions, or anything else you can think 
of that cannot hold a steady or definite 
pitch. 
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The most interesting waves for us are 

the periodic waves since these have 
definite pitches. They include the tones of 
most musical instruments and the sounds 
of singers holding a pitch. All of the 
instruments we encounter in the 
Tchaikovsky excerpt are playing tones with 
well-defined frequencies or pitches. These 
instruments consist of three different 
woodwinds, the horns, and the strings. The 
percussive instruments in the orchestra 
have difficulty producing sustained tones. 
The piano gets help from the sustain pedal, 
but technically the sound is aperiodic. It 
dies down immediately after being 
produced. Timpani are drums that give a 
"tuned sound" for an instant. Cymbals are 
crashes. 

There are four main sections in an 
orchestra: the woodwinds, brass, strings, 
and percussion. The first three can produce 
periodic tones. That covers a lot of ground. 
In fact, these sections of the orchestra are 

the ones that play most of the time. Strings 
come first, then woodwinds, and finally 
brass in order of typical use. Percussion is 
employed sparingly in a usual orchestral 
work. 

So our focus on periodic waves is 
justified. And remember, all singers are 
included because they can sing a pitch and 
hold it. Even those of us that can't sing 
usually can hum a note for a few seconds. 
So most instruments, all singers, and the 
rest of us produce tones with different 
timbres. 

Even within the same instrument 
category, timbre varies. The timbre of a 
Stradivarius is different from your common-
variety violin. In fact, the timbre is the 
signature or fingerprint of the instrument. 
However, timbre also varies somewhat for 
different ranges of notes on the same 
instrument! In the next section you will learn 
how to analyze timbre. 

 
 
Fourier's Theorem 
 

While the musician may analyze a 
melodic line in terms of a musical scale, the 
physicist analyzes timbre in terms of 
harmonics (which we have called the 
"physicist's scale"). A mathematical 

physicist, Baron Jean Baptiste Joseph 
Fourier, presented an astounding theorem 
in 1807, which we state below. He found 
that all periodic waves can be constructed 
from sine waves in the harmonic series!

 

 
 

The claim is that you can make any 
periodic wave from its harmonics. This is a 
very profound statement, and one which we 
would like to demonstrate with a specific 
example. We will take a square wave and 

challenge the theorem. How can sine 
waves be combined to get a square? You 
might be skeptical. That's good. You should 
be. It makes for a good scientist. 
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Suppose there was a claim that you 
could make any food from a set of basic 
ingredients. You might call the basic series 
of ingredients the "harmonic series of 
cooking." Fig. I-4 below shows such a 
hypothetical series of ingredients, 
appropriately labeled H1, H2, H3, and so 
on. Only seven are shown below. Imagine 
these in your magic cupboard. You accept 
any challenge of a food to cook. As you go 
to work, you might not have to use every 
ingredient in your collection. You would also 
use specific amounts of those ingredients 
needed. If you wrote out what you used and 
how much of each ingredient, you would 
call this a recipe. It would be the secret for 
cooking the specific meal you were asked 
to cook. 

Similarly, when presented with a 
periodic wave, we can write down which 
ingredients, i.e., harmonics, we use and just 
how much of each. We mix the ingredients 

by simply adding harmonics. We know how 
to add waves; we simply add the 
displacements. So the recipe will tell us 
which harmonics to use and just what 
amplitude to choose for each. We will refer 
to an amplitude of 1 as one cup's worth. 
The various amounts we need of each 
harmonic can be called the Fourier recipe in 
honor of Fourier. 

Actually it's called the Fourier spectrum. 
But there is one more thing a complete 
recipe needs to tell us. This is how to 
position the harmonics before adding them. 
How are they aligned? Are they in phase? 
So we need the phase relationships. But 
the spectrum will only supply the 
amplitudes since these alone essentially 
affect the sound of the tone. This may be 
starting to sound complicated, but it really 
isn't. The best way to convince you of this is 
to work out an example. 

 
 
Fig. I-4. Fourier Synthesis is like Cooking! 
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The square wave we would like to make 

from sine waves is illustrated in Fig. I-5. 
The square wave is a periodic wave but we 
show one wavelength below. We purposely 
choose a difficult waveform, one with 
corners. Fourier's Theorem states that we 
can construct or synthesize this square 
wave from the harmonics that begin with 
the frequency of the periodic square wave. 
Let's call this frequency f. The fundamental 
therefore has the same frequency and thus 
the same wavelength of our square wave. 

The method we employ in building up 
the square wave from the harmonics is 
more artistic that scientific. Physics and 
engineering majors learn mathematical 
methods to find the Fourier spectrum 
(recipe). Does that mean they understand it 
better? No. In fact, you will understand it 
better because you will see the square 
wave take shape as we go, rather than 
become overwhelmed by the obscurity of 
mathematics. The author speaks from 
experience. He finally understood Fourier 
analysis in graduate school when he did it 
the way you are about to see. 

Fourier's Theorem directs us to the 
harmonics that build on the same frequency 
of the square wave we are trying to make. 
Therefore, the first harmonic is the sine 
wave with the same wavelength as our 
square wave. This first harmonic is shown 
in Fig. I-6. Let's use this as a reference for 
our amplitude and say it has amplitude 1. 
We go to our harmonic "cupboard" so to 
speak and use a full cup of our first 
harmonic. 

It resembles our square wave a little. 
Doesn't it? You are probably not impressed 

with Fig. I-6 being a match for Fig. I-5. But 
we only used one harmonic (one 
ingredient). Things will shape up as we 
proceed (to cook). 

 

 
 
 
 
 



Copyright © 2012 Prof. Ruiz, UNCA I-8

 
 

Fig. I-7 shows the shortcomings of our 
first harmonic H1. The square wave is 
included in the background so we can 
compare the two. 

The first part of H1 (left edge) is too low. 
It needs to come up a bit. See the first 
arrow at the left in Fig. I-7. Similarly, the 
crest is too high. The crest needs to come 
down some. Then, the section just to the 
right of the crest needs to be taller. The 
trough needs similar corrections, but in 
reverse directions. 

The vertical arrows in Fig. I-7 indicate all 
the major corrections necessary to improve 
the match with the desired square wave. 
The third harmonic has 3 crests and 3 
troughs in just the right places to make 
these corrections. 

See the upper diagram in Fig. I-8 for a 
sketch showing H1 and H3. We use H3 with 
an amplitude of 1/3. We might say we use 
the ingredient H3 with 1/3 of a cup. Note 
that we skip over ingredient H2. 
Remember, we do not have to use all the 
harmonics or ingredients for a specific 
recipe. 

The result of adding H1 at full amplitude 
and H3 at an amplitude of 1/3 is given in 
the lower diagram of Fig. I-8. You might ask 
why an amplitude of 1/3 for H3. The recipe 
calls for 1/3 by trial and error. Actually, a 
mathematical procedure can be used to 
arrive at the precise value of 1/3. 
 
   Nevertheless, our sketch indicates that 
1/3 is a good value for the amplitude of H3. 
Don't try to add the waves precisely; strive 
instead for a qualitative understanding of 
the addition. Note that H3 interferes 
constructively at its first crest. This shores 
up the left end a bit. Then note that the first 
trough of H3 interferes destructively with 
the crest of H1. It pulls the crest down. 
Study the effects of the addition on the 
other sections. 
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We mark with vertical arrows the further 
corrections we need to make for our wave 
to look even more like a square wave. See 
the upper diagram in Fig. I-9. We find that 

we need 10 corrections, 5 up and 5 down. 
Note that they alternate. The fifth harmonic 
H5 has 5 cycles of crests and troughs. This 
harmonic is sketched in the upper diagram 
with an amplitude of 1/5. The corrections 
need to be gentle so we use this smaller 
amplitude for H5. Note that the 4th 
harmonic is skipped over for synthesizing a 
square wave. 

The result after adding the 5th harmonic 
to the sum of the fundamental and 3rd 
harmonic is given in the lower diagram in 
Fig. I-9. We are closer now in our 
approximation to the square wave. Observe 
that H1 alone has a single crest. The sum 
of H1 and H3 gives a "two-bump" crest and 
the sum of H1, H3, and H5 gives a "three-
bump" crest. Notice also that the trough has 
these three small bumps but reversed. See 
if you can sketch the waveform resulting 
from adding in H7. This harmonic is used 
with an amplitude of 1/7. You should have 4 
bumps in the first half of the wave. Fig. I-10 
shows the result when H7 and H9 are 
included. The result has 5 bumps in the 
crest region. Note that we added 5 odd 
harmonics and have 5 bumps. The 
amplitude used for H9 is 1/9. 

The sum wave begins to look more and 
more like a square wave. The prescription 
calls for using the odd harmonics, i.e., sine 
waves with frequencies f, 3f, 5f, 7f, 9f, and 
so on. The specific amounts to add 
(amplitudes) are 1, 1/3, 1/5, 1/7, 1/9, and so 
on respectively. As many more harmonics 
are added, the wrinkles get ironed out. The 
overshoot at the edges were discovered by 
Gibbs. They do not get ironed out; however 
each "rabbit ear" is squeezed shut as an 
infinite number of sine waves are added. 
The result is a perfect acoustical match.

 



Copyright © 2012 Prof. Ruiz, UNCA I-10

 
We successfully constructed a square 

wave from the harmonic series. This is 
called Fourier synthesis. Fourier analysis is 
the breaking down of a periodic wave into 
its harmonics. Since any tone held by a 
singer or musical instrument is a periodic 
tone, it can be Fourier analyzed, usually by 
scientific instrumentation. The harmonics 
above the fundamental are referred to as 
overtones, as discussed earlier.  Each 
harmonic is also called a partial (part of the 
complete tone). 

The simple waveforms introduced 
earlier can be analyzed by theoretical 

methods of mathematical physics. The 
results for these simple geometrical 
waveforms are given in Table I-1 below 
(first nine harmonics). The partial-wave 
components (partials) are not always lined 
up with the fundamental for adding as in the 
case of the square wave. They need to be 
shifted left or right by various degrees, 
whatever the recipe calls for. The amount 
shifted is given by the phase. However, 
these are not listed since the more 
important ingredient in hearing is the 
amplitude information. 

 
 
Table I-1. Five Periodic Waveforms and Their First 9 Fourier Amplitudes. 
 

 
 
Fourier Spectra 
 

The results of Fourier analysis are most 
conveniently expressed in a bar graph. The 
plot of the relative amplitudes is often 
referred to as the Fourier spectrum for the 
periodic wave. The Fourier spectra for the 

five waveforms in Table I-1 are given in Fig. 
I-11. Note that the Fourier spectrum for the 
sine wave is just one harmonic, the 
fundamental or sine wave itself. 
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Fig. I-11. The Data in Table I-1 Expressed in Graphical Form. 
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Some Questions 
 
 
 

Fill in the circles below for the correct answers. 
 

 
 
 
 

Check the appropriate boxes below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

--- End of Chapter I --- 


