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F. Frequency Ratios 
 
   

We study in this chapter the 
fundamental topic of frequency ratios. A 
frequency ratio is relevant when we 
consider two tones. Some combinations are 
pleasant, others are unpleasant. The 
absolute frequency is not important. It is the 
relative frequency that is significant. You 
know this. For example, you can sing a 
song like Mary Had a Little Lamb. Then you 
can start the song again at a slightly higher 
pitch. You will unconsciously adjust all the 
subsequent pitches to their proper relative 
positions so that the song once again 
sounds like Mary Had a Little Lamb. You 
have preserved the song. This is called 
transposing. 

Pianists are often asked to play the 
same song starting at different pitches in 
order to accommodate singers. The pianist 
is said to transpose the song into another 
key, i.e., another starting point. The word 
transpose is used because the song is 
often written in a different key. The 
musician is not reading the music, not 
playing where it is written, but transposing 
to a different key. This takes practice. Of 
course, if the pianist can play by ear, music 
is not necessary in the first place. 

Over the ages people of different 
cultures have chosen tones that coordinate 
well with each other. These groups of tones 
are called scales. We will work with the 
western major musical scale in this chapter. 
This is the scale you learned many years 
ago: Do-Re-Mi-Fa-Sol-La-Ti-Do'. It's all the 
music you need to know in order to 
understand this text. You probably learned 
it in kindergarten. You see, kindergarten is 
very important. You learn about scales, 
among other important activities like 
relating to others. Someone once said that 
you learn in kindergarten everything you 
need to succeed in life. 

The musical scale can start on any 
pitch. You sing Do anywhere you like and 
then proceed to sing the other tones 
accordingly. Once again, the relative pitch 
is important for the study of the coordination 
of these tones. Therefore, we will compare 
the frequencies by ratios. Ratios are not 
complicated. Let's use a monetary analogy. 
You may have $150 and your friend has 
$300. Well, we only care that your friend 
has twice as much as you if we are only 
interested in the ratio. We can say that you 
have a given amount, which we describe by 
1. The "one" simply means the money in 
your pocket, your "one" pocket of money. 
Then we say your friend has 2, meaning the 
equivalent of 2 times what you have. Your 
friend has "two pockets" of money in a 
sense. Another person might have 3 or 4 
times what you have. We are comparing 
amounts of money with what you have. The 
numbers are therefore ratios. 

We will proceed first by reviewing the 
musical scale. We will develop the concept 
of musical intervals. We will develop a trick 
where we can readily tell which note in the 
scale is played relative to our reference 
note Do. Secondly, we will develop a 
technique for measuring frequency ratios. 
This is the subject of Lissajous (LISS-uh-
joo) figures. Thirdly, we will apply this 
technique to determine the frequency ratios 
for the tones in our 8-note musical scale. 
But we will work backwards at that point. 
We will first search for tones with simple 
ratios. Then we will discover that these 
notes are in our scale. The scale we unfold 
will be based on perfect ratios. In a later 
chapter we will learn that, today, our 
instruments are not tuned perfectly to such 
a scale. Compromises are made. 
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Musical Intervals 
 
   Let's review a couple of definitions before 
we investigate musical intervals. Frequency 
is a measure of how rapidly vibrations 

occur. The frequency of a sound wave is 
perceived as pitch. A musical scale is built 
from a set of frequencies called tones or 
notes. 

 
 

Frequency (pitch) - number of vibrations per second (hertz, Hz). 
 

Musical scale - a discrete set of frequencies (tones or notes). 
 
   

The common major scale is illustrated 
below in Fig. F-1. There are eight tones in 
the scale. These are numbered in the 
figure. It will be convenient for us to refer to 
a tone by its number from time to time. The 
first note is Do, the second note is Re, and 
so on. We call the last note Do' to 
distinguish it from the first note, Do. 

You will find musical notation below the 
keys in Fig. F-1. You do not need to worry if 
this is the first time you have seen such a 
thing. Consider it like a thermometer that 
indicates pitch without using numbers. This 
"musical thermometer" is called a staff. The 
higher up on the staff, the higher the pitch 
of the note. In other words, the higher the 
frequency, the higher the position. But don't 
think about numbers. The notes, of course, 

have numbers to define frequencies, but 
the spacing on the musical staff does not 
correspond to them in some simple fashion. 
Remember the AM numbers on our radio. 
They were spaced unevenly. Such a 
spacing where equal steps in distance do 
not correspond to equal steps in frequency 
is called a nonlinear scale. 

The beauty of the nonlinear musical 
staff is that each note of our scale is equally 
spaced by position, not frequency. The 
tones alternately fall on lines or spaces. 
Notice the short line necessary to indicate 
the first note. The symbol at the left of the 
staff is called a clef symbol. Ours is a treble 
clef, meaning tones in the upper half of the 
piano. 

 
 
Fig. F-1. The Major Scale. 
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We take the first note as our reference 

tone. We will compare the other notes to 
Do. For example we may compare Sol to 
Do. Moving from the reference Do up to 
Sol, we move up to the 5th note. Musicians 
say we move up a 5th. If you press these 
two keys together, you are playing an 
interval called the 5th. If you choose to play 
the 4th note (Fa) with the reference (Do), 
you are playing a 4th. Going from Do to Fa 
defines an interval of a 4th. So an interval is 
really the "musical distance" between two 
notes. We will always start on the Do. 

Since we jump from Do to another note, 
it can be difficult to recognize the upper 
note if someone plays one for us and asks 
us to identify it. Music teachers have come 
up with a technique to help us do this fairly 
accurately with a little practice. We use the 
old trick of remembering the start of a song 
for each of the jumps. Then, when we hear 
a jump, we scan through the songs in our 
head until we find a match. The actual 
practice of doing this is called ear training. 
Table F-1 below lists the 8 intervals and a 
song to help us recognize each of them. 

 
 
Table F-1. Intervals. 
 

 
 

As an example, consider the interval of 
a fourth. This corresponds to playing the 
first note Do as always and then the 4th 
note Fa. These notes come at the 
beginning of the bridal march by Wagner, 
played at the start of weddings. These 

notes may be played simultaneously to 
perceive how well they blend. Are they 
pleasing? We will answer such questions in 
section F-3. The 7th in "Superman" does 
not come at the very beginning of the 
theme. 
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Lissajous Figures 
 

Lissajous (LISS-uh-joo) figures are part 
of the language of the scientist, i.e., 
physicist or engineer. We have just 
discussed components of the language of 
the musician. In this section we turn to 
physics. Then in the third section we 
combine both the musician's and physicist's 
techniques in a wonderful experiment to 
determine the frequency ratios of the 
perfect major scale. 

Our analysis will have a blend of 
mathematics, physics, perception, music, 
esthetics, and even philosophy. The Greek 
mathematician and mystic, Pythagoras, 
was one of the first to study the esthetics of 
pleasing tone combinations. He showed 
that tones with the simplest mathematical 
ratios were the most pleasing. This had 

profound philosophical implications for him. 
He discovered that one way to understand 
the beauty and harmony of nature is 
through mathematics. The methods we 
develop here will enable us to pursue the 
study of harmonious combinations of tones. 

We will explain Lissajous figures by 
example. Consider a party game where you 
are given two sets of instructions for 
walking on a floor, the playing field. One set 
of instructions tells you how to move East 
or West, which we call right-or-left, while 
the other tells you how to move North or 
South, which we simply call up-or-down. 
You must move simultaneously according 
to both instructions. Fig. F-2a below shows 
our first game. The instructions are at the 
left in graphical form, while the playing field 
is pictured at the right. R stands for Right, L 
for Left, U for Up, and D for Down. 

 
 
Fig. F-2a. Lissajous Figures: Case I. 
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The game proceeds in four phases or 

quarters. The horizontal instructions tell you 
how much to move left or right, while the 
vertical instructions tell you how to move up 
or down. For the 1st quarter, your horizontal 
instructions tell you to start in a position 
neither right nor left, then proceed 4 paces 
(blocks) to the right. Now you must do this 
while at the same time following the vertical 
instructions, which tell you to move 4 paces 
up (from the center) during the 1st quarter. 
To perform both of these actions 
simultaneously, you walk along a diagonal 
to a destination that is to the right and up. 
The 2nd quarter calls for you to come back 
to the center position, a position neither 
right nor left, neither up nor down. The 3rd 
quarter has you going to the left and down 
at the same time. The 4th quarter instructs 
you to come back to the center. 

But why are we doing this? Why play 
the party game? Play one more game 

before we delve into this. See if you can 
understand the pattern traced out on the 
playing field in Fig. F-2b below. Note that 
the horizontal wave is the same as before. 
The vertical wave is a similar wave but 
shifted. It's not completely out of phase 
(180° out of phase), but halfway there. We 
say it's 90° out of phase. The traced pattern 
tells us the frequency ratio of the vertical 
and horizontal waves. You just count the 
number of points at the top and the number 
of points at the right. From Fig. F-2b, the 
answer is 1 in each case. So the 
frequencies are the same. In Fig. F-2a, the 
frequencies are also the same. There is 
one point at the top and at the right (same 
point). We plan to send two tones into the 
oscilloscope which is set in Lissajous mode. 
Then by counting the points at the top and 
at the right, we obtain a comparison of the 
two frequencies! 

 
 
Fig. F-2b. Lissajous Figures: Case II. 
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You may be a little confused. So is 
everybody when they learn a new game for 
the first time. What should you do? Play 
another game. By the end of the third 
game, things will become clear. Refer to the 
third case in Fig. F-2c below. The 
instructions indicate that you start in the 

center. For the 1st quarter, you move to the 
right and go up and down at the same time. 
Then you move to the left and go down and 
up for the 2nd quarter. Refer to the diagram 
at the right to see these sections of the trip. 
Can you figure out the paths for the 3rd and 
4th quarters? 

 
 
Fig. F-2c. Lissajous Figures: Case III. 
 

 
 

Now for the analysis. We already know 
the answer for the frequency comparison. 
The vertical wave has twice the frequency 
as the horizontal. The vertical wave has two 
complete cycles in the four quarters of our 
game time while the horizontal wave has 
one complete cycle. How can we figure this 
out from the game board at the right in Fig. 
F-2c? We compare the number of points at 
the top to the number of points at the right. 
The comparison is 2 to 1. We write this as 
2:1. As you trace out the combination of 
vertical and horizontal oscillations, you 
reach the top two times for every time you 

reach the far right. That means your vertical 
frequency is twice the frequency of the 
horizontal. 

We use Lissajous figures electronically 
to determine the vertical frequency 
(unknown) relative to our horizontal or 
reference frequency. However, since it's 
hard to lock in on the phases, the waves 
drift. Sometimes we get the baseball 
diamond for our 1:1 case (Fig. F-2b), 
shifting into the line of Fig. F-2a as the 
phases change. The shifting pattern is 
perceived as a rotation. 
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The Just Diatonic Scale 
 

We are now ready for our big 
experiment. We set our oscilloscope to 
Lissajous mode and connect two tones to it. 
The reference tone Do is connected to the 
horizontal input. The tone that we will 
change and measure relative to the 
reference is connected to the vertical. It is 
interesting to turn the sound off and just 
work with the patterns. We scan the vertical 
until we get nice patterns. These have 
simple ratios like 2:1 or 3:2. For the ratio 
3:2 (read as 3 to 2), we find 3 points at the 
top and 2 at the right side. 

This indicates that the vertical travel is 
up and down 3 times during the time it 
takes to go back and forth 2 times along the 
horizontal. Relating to money,  it's the case 
where your friend has 3 half-dollar coins 
and you have 2. The ratio is 3 to 2. You 
have 100 pennies worth of money and your 
friend has the equivalent of 150 pennies. 

As we continue along these lines we 
find that simple ratios like 2:1, 3:2, 4:3, 5:4 
etc. sound pleasant. We also discover that 
these tones are in the major scale! For 
example, suppose we look at the 2:1 case. 
We play the reference note, then the 
vertical input, which we know is twice the 
frequency as the reference. As we listen to 
the reference (horizontal) and then the tone 
on the vertical played right after the 
reference, we recognize the beginning of 
Somewhere Over the Rainbow. So we 
know we have the octave. The octave 
higher than Do is the note Do' and it has 
double the frequency of the lower note Do. 

This is one of the discoveries of 
Pythagoras. However, Pythagoras 
experimented with strings of different 
lengths. We are using electronic tone 

generators and an oscilloscope. Pythagoras 
would be impressed. 

Fig. F-3 illustrates our use of the 
oscilloscope to obtain a Lissajous figure. 
We send in our reference tone Do into the 
horizontal input. The unknown tone that we 
can vary is sent to the vertical input. We 
turn the knob on the oscillator of our 
unknown tone until we get a nice pattern. 

A nice pattern has been found in Fig. F-
3. The pattern has rounded edges because 
we are using sine waves here instead of the 
triangle waves of Fig. F-2c. However, we 
can still count the number of times the wave 
reaches to near the "ceiling" - two times. 
The number of rounded extremes at the far 
right is just one. So we conclude that the 
vertical wave is twice the frequency of the 
horizontal wave. The ratio is 2 to 1, i.e., 2:1. 
We play these two tones and we hear the 
beginning to Somewhere Over the 
Rainbow. The interval defined by Do and 
the unknown tone is an octave. So the 
vertical tone is Do'. 
 
Fig. F-3. Lissajous Figure with Oscilloscope 
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The results for several tones are given 
in Fig. F-4. Note that the ratio is 1:1 when 
both tones are the same. The unison is 1:1, 

the octave is 2:1, the fifth 3:2, and the 
fourth 4:3. These are the most pleasing 
tone combinations. 

 
Fig. F-4. Lissajous Figures and Frequency Ratios for Some Tones of the Major Scale. 
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The most pleasant combinations of 
tones are listed in Table F-2. Tones are 
said be consonant when pleasant, and 
dissonant otherwise. However, there are 
degrees of consonance and dissonance. 
The most consonant combination is 
obviously when both tones are the same. 
This is the unison. The frequency ratio is 
1:1. The next best is the octave. When the 
8th tone of the scale is played with the 
reference tone Do, it sounds so pleasing 
that the 8th tone is also named Do. We use 
the name "Do-prime" (Do') to distinguish 
this higher Do from the lower one. Many 
composers use octaves in writing for the 
piano. They are impressive when played 
quickly by one hand. The flashy 19th-
century composer-pianist Franz Liszt often 
dazzled audiences with rapid octaves. 

Next in line for consonance is the fifth, 
with a ratio of 3:2. The next best 
consonance is the fourth, with a ratio of 4:3. 
The amazing feature of Table F-2 is that the 
listing of consonances from best on down is 
grounded in mathematics. The simplest 
numbers are chosen to make these ratios. 
There is a pattern. In fact, the table 
suggests that the next to be investigated is 
the case with a ratio of 5:4. That 
combination is the result for the interval of a 
third (Do-Mi). You can now appreciate the 
wonder of Pythagoras as he discovered the 
mathematical foundation of musical 
esthetics. The pleasing or harmonious 
intervals are described by elegant 
frequency ratios. 

 
Table. F-2. The Most Consonant Tone Combinations (Tuning to Perfect Intervals). 
 

 
 
  

Today we do not use perfect intervals 
for tuning except for the octave. However, 
the tuning is close to the ratios given in 
Table F-2. The reason for this will be 
explained in a later chapter. 

Music theory for composition and 
harmony incorporates the essence of Table 
F-2. The following analysis applies to 
harmony, not the melody line. The most 
pleasing combination consists of the same 
notes. However, if you just play the same 
note, you do not go anywhere. The next 
best change is to go to the octave. 
However, this change sounds so close to 
the reference (Do) that there still doesn't 

appear to be any (significant) change. The 
next best is movement by a fifth. This is a 
most pleasing change. Over the years, 
musicians have dressed up this change by 
adding related notes to support it and bring 
it out so to speak. Related notes when 
played together are called chords. 

Chord changes by fifths serve as the 
basis for music theory. The musical palette 
of fifths is referred to as the cycle of fifths. 
The author's jazz teacher at the University 
of Maryland once said (c. 1975) that 80% of 
popular music consists of chord (harmonic) 
changes that are fifths. 
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Frequency ratios for the most consonant 
intervals are illustrated in Fig. F-5. Once 
again, note the elegance of the 
mathematics. If you take the frequency for 
Do to be 100 Hz, then the octave is twice 
this, i.e., 200 Hz. The fifth is 150 Hz 
(remember our earlier discussion of the 3:2 
ratio with money). The 4:3 ratio gives a 
frequency of 133 Hz. Can you explain why? 

The 5:4 ratio gives a frequency of 125 
Hz. The 5 to 4, in terms of our money 
example, translates to your having 4 
quarters and your friend 5. You always 
have the dollar. You break it into 4 parts, 
then figure out what 5 of these parts would 
be. That gives 5 quarters or 125 pennies, 
the amount of the unknown. 

 
 
Fig. F-5. Intervals and Frequency Ratios. 
 

 
 
 

We would like to explain shortly, this 
time in some detail, how to figure out the 
frequencies from the ratios. We intend to do 
this for the entire perfect major scale. 

Recall that the Greek philosopher-
mathematician Pythagoras discovered the 
mathematics behind the consonant 
intervals. This was around 550 BC. 
Pythagoras went on to do work with musical 
scales, which quickly gets complicated due 
to playing in different keys. 

The Greek astronomer Ptolemy around 
150 AD developed a scale with the simplest 
perfect ratios. The scale presents difficulties 

for playing in other keys; however, it is 
excellent if you stick with one key. 

The monk Zarlino introduced this scale 
for Church services in 1558. Table F-3 lists 
the degrees of the scale with perfect ratios 
for each degree. The frequencies are 
compared to the first degree as before. The 
major scale using these frequencies is 
called the just diatonic scale, just scale, or 
just intonation. Since the time of Bach 
(around 1700) we use the equal-tempered 
scale, which will be discussed in a later 
chapter. 

 
Table F-3. Scale Degrees and Frequency Ratios Relative to the First Degree (Just Scale). 
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Table F-4 lists an example of specific 
frequencies that realizes the just diatonic 
scale. We start with 240 Hz so that the 
numbers come out easy. The easiest one to 
determine is the octave or 8th degree, 
which is double. But we want a systematic 
way to calculate these. So we will proceed 
in order. 

The second has a frequency ratio of 9:8. 
The prescription to get the frequency is first 
to establish your reference frequency. We 
did that. It is 240. Now take the second 
number in 9:8, i.e., the 8, and divide 240 

into 8 pieces. You get 30 for each of these. 
We want 9 of these for our tone. So 9 times 
30 is 270 and we are finished. The ratio of 
the second degree to the first degree is 9 to 
8; the second tone has 9 parts (30 per part) 
to the 8 parts of the reference. 

For the next case, 5:4, you divide the 
reference 240 into 4 parts. This gives 60. 
Now we need 5 of these. That is 300. The 
third has 5 parts (60 per part) to the 4 parts 
of the reference. Note that the value of a 
part here is 60, not the same "piece size" 
we considered earlier. 

 
 
Table F-4. Example of Specific Frequencies for the Just Diatonic Scale. 
 

 
 

We now summarize these steps to 
determine frequencies in a compact form. 
For example, to find the frequency with ratio 

5:4 with respect to our reference tone of 
240 Hz, you simply write 5:4 as 5/4 and 
multiply this ratio by 240. 

 

 
 

Use this method to verify all the 
frequencies in Table F-4. Do not use a 
calculator. You do not need a calculator to 
work out the examples in this text. You will 

understand the material better without a 
calculator, acquire confidence in scientific 
calculations, and feel better about yourself 
as a result. 
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Some Questions 
 
 
These topics are discussed in class. 
 
Describe how the 1, 5, and 4 are employed in simple songs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sketch the “Blues Formula.” 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

--- End of Chapter F --- 


