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B. Vibrations 
 

In this chapter we will learn about 
different kinds of periodic waves. We have 
already seen the sine wave, which results 
from simple harmonic motion. We will 
characterize periodic waves in general. The 
concepts of frequency and wavelength will 
still apply. We will then compare the 
physical characteristics of periodic waves 
with perceptual ones. How do different 
periodic waves sound? After this, we will 
see that no wave continues forever. Waves 
tend to die out; i.e., damp out. Energy must 
constantly be put into a system to maintain 
vibrations. We will see that driving a system 
at a special frequency gives the most 
efficient results. This is the subject of 
resonance. Resonance is very important in 
the design of musical instruments. It also 
has an analog in electrical circuits. It helps 

engineers design circuits that can respond 
to the least amount of energy. 
 
Complex Periodic Waves 
 

A periodic wave is any wave that 
repeats its pattern. Figs. A-11 and A-12 
illustrate examples of periodic waves. 
There, you see sine waves, the simplest 
type of periodic wave. A complex periodic 
wave is any periodic wave that is not a sine 
wave. So that's everything else, as long as 
it repeats. An example of a complex 
periodic wave is given below in Fig. B-1. 
We include horizontal and vertical reference 
axes to help us describe the wave more 
clearly. Another example of a complex 
periodic wave is found on the cover of this 
text. 

 
Fig. B-1. Example of a Complex Periodic Wave. 

 
 

The wavelength λ is the distance from 
any point on the wave to the place where 
the pattern begins to repeat. It is easy for 
us to take the beginning point where the 
wave meets the horizontal axis and slopes 
upward in Fig. B-1. However, any starting 
point can be taken. The frequency is the 
number of patterns or cycles made per 
second. 

Scientists like to use the second as the 
time interval. We will find this convenient 

since the sound we hear has frequencies 
easily expressed using this time unit. The 
amplitude is a measure from the horizontal 
reference (equilibrium) to the maximum 
point of the wave. The wavelength is 
measured in meters (m), centimeters (cm), 
or some other length unit of your choice. 
The metric system is simple since you only 
have to think in terms of 10, 100, etc. For 
example, the centimeter is 1/100 of a 
meter. This is better than having units like 
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the yard, which breaks into 3rds to get feet, 
each of which then has 12 equal divisions 

(inches). 

We will introduce metric units as we 
need them rather than hitting you with many 
at once. Often texts overwhelm the student 
with many metric units and then use less 
than half of them. You should not worry 
about learning all the metric units. The 
professional scientist doesn't know all of 
them either. 

Let's consider frequency. Frequency 
tells us how many cycles or patterns occur 
per second. As an example, consider a 
source vibrating 50 times per second. We 
can write f = 50 "cycles" per second (50 
cps), or f = 50 "cycles"/s. We can also write 
f = 50 "patterns"/s, 50 "vibrations"/s, 50 
"oscillations"/s. How about f = 50 
"wiggles"/s? 

Since we can't get agreement on just 
what to call the repeating "things," we just 
write f = 50 1/s. We read this as 50 per 
second. Call them whatever you like. By 
convention, 1/s (per second, where cycles, 
patterns, or vibrations are understood) is 
named after the physicist that discovered 
radio waves, Hertz. So now we can write f = 
50 hertz or f = 50 Hz for short. The lower 
case "h" is used when the word is written 
out as hertz and the upper case "H" is used 
when the unit hertz is abbreviated as Hz. 

The hertz is a metric unit. The metric 
system consists of special units that 
scientists agree upon such as the meter, 
second, and hertz. The metric system also 
contains a series of prefixes which 
represents the numbers 10, 100, 1000, etc. 
and 1/10, 1/100, 1/1000, etc. 

The prefix for 1000 is kilo, which can be 
abbreviated simply as "k." Therefore, one 
thousand hertz is simply kHz (a kilohertz). 
The hearing range for humans (rounded off) 
is from 20 Hz to 20,000 Hz (or 20 kHz). 
Another example is one hundredth of a 
meter, 1 cm (one centimeter). 

You see, the metric system is easy. 
Simply attach the appropriate prefix such as 
centi or kilo to the relevant unit such as 
meter or second. One thousand seconds is 
a kilosecond (ks). A hundredth of a second 

is a centisecond (cs). Some silly authors 
like to attach metric prefixes to anything 
they like, which technically is allowed. For 
example, one thousand lectures is a 
kilolecture. Two thousand mockingbirds is 
two kilomockingbird, i.e., To Kill a 
Mockingbird. 

Another physical parameter is the 
period. The period, designated by T, is the 
time it takes to complete one pattern or 
cycle. This depends on the frequency. If the 
frequency is f = 10 Hz (i.e., 10 1/s), what is 
the period? In other words, if you do 
something 10 times per second, how long 
does it take to do it once? The answer is 
1/10 second (0.1 s). If f = 5 Hz (i.e., 5 1/s), 
the period T = 1/5 s. Note that you simply 
flip the frequency to get the period. Flipping 
10 gives 1/10 and flipping 5 gives 1/5. Also 
note that the units flip: 10 1/s becomes 1/10 
s on the flip. Note that if you flip the period, 
you get the frequency back and vice versa. 
We summarize these relationships as 
follows: T = 1/f and f = 1/T. The 
mathematical name for this flip is reciprocal. 

It's convenient to learn the metric prefix 
for a thousandth, which is milli. The period 
for a 1000-Hz sound wave is 1/1000 s = 
0.001 s = 1 millisecond (or 1 ms). Let's do 
another example. 

Consider a 100-Hz sound wave. The 
period T is 1/100 s by flipping the 100 1/s. 
Therefore, T = 1/100 s = 0.01 s, just like 
1/100 of a dollar is $0.01. This answer is 
perfectly satisfactory. In order to convert to 
milliseconds, write the period as T = 0.010 
s. This is still one hundredth of a second; 
however, it is expressed as 10 thousandths 
of a second. So our period is 10 ms (10 
milliseconds). Another way to think of this is 
to move the decimal point three places to 
the right and you go from seconds to 
milliseconds in one sweeping step. 

Continue the analogy with money. 
Consider $10 and proceed slowly. One 
tenth of a 10-dollar bill is one dollar. One 
hundredth of $10 is a dime. One 
thousandth of $10 is a penny, as you need 
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1000 pennies to make $10. Now, 10 
pennies equals one dime; i.e., 10 
thousandths of $10 equals one hundredth 
of $10. Are you confused? If so, this is 
normal. So what you do is read it over 
again slowly and perhaps write some things 
down to help you visualize it. 
 
Perception of Periodic Waves 
 

We would like to relate the physical 
descriptions of the previous section with 
perceptual characteristics. There are three 
basic perceptual features of periodic waves 
to consider. 

1. Loudness. The easiest perceptual 
characteristic to investigate is loudness. 
The loudness of a wave is determined by 
the amplitude, as illustrated in Fig. B-2. 
However, the relationship is not simple. You 

can't say that if you double the amplitude, 
the sound is twice as loud. There is a good 
reason for this. If you want to be able to 
hear a whisper and a loud thunder crash, 
the ear has to be stubborn in perceiving 
loud sounds. It takes more than doubling 
the amplitude for the ear to be impressed. 
We will learn more about sound levels and 
loudness in a later chapter. The only thing 
we state here is qualitative: the greater the 
amplitude, the louder the sound. This also 
applies to non-periodic waves like 
explosions. 

Periodic waves are heard as steady 
tones. Although amplitude mainly 
determines loudness, other factors affect 
how loud sounds appear. Our ears are not 
uniformly sensitive to all frequencies, so 
some sounds may sound louder simply due 
to our sensitivity, especially to high tones. 

Fig. B-2. Amplitude and Loudness. 

 
 

2. Pitch. Different frequencies of 
periodic waves are heard as different 
pitches or tones. The higher the frequency, 
the higher the pitch. Notice that our earlier 
discussion of frequency, wavelength, and 
period showed that all three of these are 

related. So we can alternately, say that 
wavelength and pitch are related, where 
short wavelengths mean high pitches (see 
Fig. B-3). Or we can alternately say period 
and pitch are related, where short periods 
indicate high pitches. 

 
Fig. B-3. Frequency and Pitch. 
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3. Timbre. The timbre (TAM-ber) of a 
periodic tone is that quality which enables 
us to distinguish between the flute and the 
violin. These instruments may play the 
same pitch at the same loudness but we 
still hear a difference. The timbre (also 
spelled timber and also pronounced TIM-
ber if you like) is determined by the shape 

of the waveform. In fig. B-4 below you find 
the waveform for a sine wave and one for 
the complex wave we encountered earlier. 
Note that the amplitudes and frequencies 
are essentially the same. The sine wave 
however will sound pure and innocent while 
the complex wave will sound richer and 
harsher. 

 
Fig. B-4. Waveform and Timbre. 
 

 
 
 

The correlation between physical properties 
and perceptual characteristics helps us 
understand the connection between physics 

(acoustics) and psychology (perception). 
Table B-1 summarizes these results. 

 
 
Table B-1. Basic Relationship Between the Physics and Psychology of Sound. 
 
 

Physical 
 

Perceptual 

Amplitude 
 

Loudness 

Frequency 
 

Pitch 

Waveform 
 

Timbre 

 
 

Later we will learn about the decibel 
(dB) scale which ranges from 0 dB (a pin 
drops) to 140 dB (near a jet, which 
damages your ears). Actually, damage can 
occur in a machine shop with 90 dB. The 

range of frequencies we hear is from 20 Hz 
to 20,000 Hz, as noted earlier. Later we will 
also analyze complex periodic tones and 
learn more about timbre. 
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However, for now, let's look at some 
different waveforms. We will simply note 
their pictures. Five waveforms can be found 
in Fig. B-5 below. These have nice shapes 
and are easy to synthesize with electronics. 
The sine wave is the simplest waveform. It 
sounds the purest in tone. The others are 

arranged depending on how different they 
appear compared to the sine wave. Later 
we will learn precise justification for this 
order. The pulse train sounds the harshest. 
Try moving your hand in step with each of 
these and imagine your eardrum vibrating 
likewise in step. 

 
Fig. B-5. Five Different Waveforms. 
 

 
 

 
Damped Periodic Waves 
 

Unfortunately, oscillations die down 
unless there is new input of energy. If you 
start a pendulum swinging, its amplitude 
decreases as it swings until it eventually 
stops. The oscillations are said to be 
damped. Fig. B-6 below illustrates such 
motion. It is a plot of displacement (position 
away from the equilibrium position) versus 
time. Scientists like to say it's a plot of 
displacement as a function of time. This 
may represent a pendulum. You kick it 
when the clock is set to zero (see beginning 
of the graph). The pendulum ball or bob 
starts to swing away from equilibrium (say 

to the right). It reaches some maximum 
displacement to the right, then starts to 
come back. It overshoots the center and 
proceeds to the left. This is represented in 
the graph as the curve dips below the 
horizontal axis. The bob swings back and 
forth but doesn't reach the larger distances 
from the center that it originally did. So the 
graph below indicates a gradually 
decreasing amplitude. Note that the motion 
is damped simple harmonic motion since it 
is represented by a sine wave decreasing in 
amplitude. 

The graph in Fig. B-6 can also represent 
the vibration of a mass attached to a spring. 
However, the mass is not pulled back in this 
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case but hit with an object. For a mass 
pulled back and let go, the graph starts 
somewhere away from the equilibrium line. 
The graph can also represent a dying 
sound wave. There is a law of nature that 
says there is no such thing as perpetual 
motion. It is the second law of 
thermodynamics. You may have heard 
about entropy (disorder) and the law that 

everything tends toward disorder. This is 
the same law. The first law of 
thermodynamics states that you can't get 
anything for nothing (conservation of 
energy); the second law states that you 
can't break even. Some energy is lost to 
friction. The pendulum stops swinging, the 
mass attached to a spring stops oscillating, 
the sound we hear dies down. 

 
Fig. B-6. Damped Harmonic Motion 

 
Driven Oscillations 
 

Due to the laws of thermodynamics, we 
want to be careful when we pump energy 
into a system. We want to maximize our 
efforts. Suppose we want to push a child on 
a swing. We would of course push the 
youngster at the frequency that the swing 
wants to go at. This is common sense. In 
this way, our energy use is maximized. 
When we stop pushing the child, of course 
the swing will eventually stop. 

But if we were to push the swing at 
some crazy frequency, we would be 
wasting our efforts. This wasted effort could 
be demonstrated by moving a hand back 
and forth at some different frequency than 
the swing. Perhaps, one time when the kid 
arrives at the hand, the push helps. But 
most times the push will not be with the 
swing. Occasionally, we will actually be 

trying to stop the kid when our hand pushes 
too soon and collides with the child's back. 
The second law of thermodynamics is bad 
enough for us to throw our efforts away. 
Let's find out when the driven system 
responds the best to our efforts. This brings 
us to an analysis of driven oscillations. 

Fig. B-7 describes an experimental 
arrangement to study driven oscillations. 
Tape a small ball to the end of a string. 
Grab the end of the string opposite the ball. 
Shake your hand back and forth, keeping 
your sweep within a short space (1 or 2 
cm). You may have a friend bracket this 
space with a thumb and forefinger for you. 

Can you find the frequency that makes 
the ball respond most dramatically? Your 
driving frequency is then called the 
resonance frequency. You are driving the 
pendulum at the frequency it likes to swing. 
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Stop, pull back the ball, and let it go so 
that it swings on its own. Isn't this the same 
frequency you used earlier? It will be unless 
you do the experiment in a thick medium 
like "oil." 
 
Fig. B-7. Hand Driving a Pendulum. 

 
Get a feel for the ball swinging on its 

own by counting or having someone clap 
each swing. Now stop the ball and start 
driving it from rest at this frequency. The 
ball will gradually increase its swing until it 
reaches a maximum as you continue to 
drive the pendulum at the resonance 
frequency. Resonance occurs when the ball 
responds with maximum swing. Resonant 
vibrations are also called sympathetic 
vibrations (the system "is in sympathy" with 
your vibrations). Compare the responses of 
the ball (total extent of swing) for different 

driving frequencies (low, high, medium). 
Note that the ball moves a little with a low-
frequency driving force, and hardly moves 
at all when driven at high frequency. 
Somewhere at a medium frequency, the 
response is greatest (resonance). 

Now we are going to make a graphical 
sketch of our results. In Fig. B-8 below we 
view a graph of response (vertical axis) 
versus frequency (horizontal axis). A low 
response is found at low frequencies. When 
you shake the pendulum slowly, the ball 
moves very little. When you shake the 
string rapidly, the response is even less. 
You change directions so rapidly that the 
ball cannot respond quickly enough. So it 
just sits there. However, at a medium or 
intermediate frequency, the ball responds 
the greatest. 

Take your pencil and place it at the peak 
of the graph in Fig. B-8. Now place a ruler 
vertically and draw a dotted vertical line 
downward until you hit the horizontal axis. 
Your dotted line should be parallel to the 
vertical axis at the left in Fig. B-8. Now 
make a dark dot where your vertical line 
touches the horizontal line. This marks the 
spot for the value of the resonance 
frequency. If our graph had numbers on the 
frequency axis instead of the words low, 
medium, and high, you could read off the 
value of the resonance frequency. 

 
Fig. B-8. Plot of Response versus Frequency: The Resonance Curve. 
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Resonance is important in musical 

instruments. When a violin is played, the 
energy action of the bow drives the string 
into resonance. Certain frequencies are 
further enhanced as the wood and cavity 
support additional resonances. This gives a 
richer quality to the tone. 

When one softly blows across the 
opening in a flute, the energy supplied 
drives the pipe into a resonance, depending 
on the effective length of the flute 
(controlled by pressing key pads). Playing a 
recorder or toy flute, one covers holes. 
Depending on which hole is uncovered, the 
pipe acquires a different resonance 
frequency. Rather than trying to guess this 
frequency and whistle into the pipe, you 
gently blow, creating a turbulence of many 
frequencies. 

The amplification due to resonance is so 
impressive that you will readily generate a 
tone. The multi-frequency breath sound at 
the mouthpiece is called noise. But only 
that frequency component that corresponds 
to the resonance frequency of the pipe is 
picked out and amplified as the pipe 
resonates at that frequency. 
 
Examples of Resonance 
 

Your author has searched extensively 
for 10 examples of resonance to help you 
master this important concept. Examples 
were found in such diverse places as the 
author's home, Star Trek, and the Bible. All 
of these involve vibrations of some kind or 
another. You should try to identify the 
source of energy in each case, the system 
being driven or excited, and the actual 
resonance effect itself. 
 
R1. A Passing Truck Shakes Things in a 
House.  Large trucks generate low 
frequencies. 

 

Such low frequencies can cause items in 
one's home to vibrate. The author was often 
scared in Philadelphia (at his in-laws' 
former home) when he felt the entire house 
shaking from the third-floor bedroom as 
large city buses passed outside. 
 
R2. Piano Note Rattles Toaster. In the 
author's former apartment at the University 
of Maryland, hitting a key near the middle of 
the piano caused a toaster element across 
the room to rattle. Only one key near the 
center of the piano did the trick. The notes 
produced by keys to the left were too low in 
frequency, while those produced by keys to 
the right were too high. 

It is good to remember that the lowest 
note on the piano is about 30 Hz and the 
highest note is about 4000 Hz (or 4 kHz). 
The key causing the resonance was about 
300 Hz. An important middle key on the 
piano is called middle C and has a 
frequency of near 260 Hz. 

R3. Singer Breaks Wineglass. This is the 
classic case of a singer who sings a 
particular note that shatters a glass. In the 
1980s, a Memorex  Commercial on TV 
featured Ella Fitzgerald singing into a 
microphone and breaking a glass. They 
taped her. Then they played the tape and 
yes, the recording broke the glass also. 

Resonance is used dramatically in the 
movie The 4th Tenor (2002) as our star 
(Rodney Dangerfield) “shatters” more than 
a wine glass with his new operatic voice. 
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The author once found broken pieces of 
glass from a lamp on the floor in Lipinsky 
Hall. He inquired as to what was going on 
the night before, suspecting resonance. He 
discovered that the UNCA Choir had been 
practicing. 

 
 
 Interestingly, breaking a glass without a 
microphone was not documented until 
2005, when Jamie Vendera did it for 
MythBusters. He hit 105 decibels at 556 Hz 
and had to try 12 delicate wine glasses 
before finding one with a proper structural 
defect. 
 
R4. An Orchestra and Floodlights. The 

author was at a concert at the 
University of Maryland in the early 
1970s. The university orchestra was playing 
the Brahms 4th Symphony. The 3rd 
movement opened with the usual French 
horns playing the E (330 Hz) above middle 
C. As the horns held this note, the same 
tone could be heard coming from a source 
somewhere to the left. It was an eerie 
sound. 

 
Then there was a pop and a floodlight 

exploded. In the movie The Mask (1994), 

Jim Carrey uses a surrealistic toy sound 
maker and blows out the windshield of a 
car. 
 
R5. Soldiers Marching Across a Bridge. 
Soldiers do not march across bridges 
because the uniform steps could induce 
resonant vibrations in the bridge. They 
break step to prevent any possible driven 
oscillations. 

 
R6. The Avalanche. An avalanche can be 
started by vibrations. You do not want to 
shout in an environment where an 
avalanche can occur. This might involve an 
unstable arrangement of snow or rocks. 
Vibrations at the proper frequency can 
shake the snow or rock formation causing 
an avalanche. 

In a very early Star Trek episode, 
Friday’s Child (December 12, 1967), 
Captain Kirk and Science Officer Spock are 
running from bad guys on a planet. The 
medical Doctor McCoy is in the mountains 
assisting a lady about to give birth. Kirk and 
Spock come up to a mountain. They are 
trapped. 

Spock suggests that they try to induce 
sympathetic vibrations in the mountains, 
dislodging the rocks. Spock knows his 
science - that's resonance. Kirk asks for the 
probability of success, which Spock points 
out is not real good. 

They of course try it anyway. 
Unfortunately, they turn on their 
communicators to do it. The communicator 
sends out radio waves, not sound waves. 
Well, let's imagine they have a setting for 
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high-frequency acoustic waves we can't 
hear. They need a high frequency since the 
stones they wish to excite are very small. At 
this point, we are trying to save the story 
from incorrect physics. The rocks do come 
down and the bad guys get wasted. But 
there is 25 minutes remaining in the story, 
so Kirk and Spock get caught by a new 
wave of bad guys. Kirk uses psychology to 
get out of the mess at the end of the 
episode. 

An avalanche scene also appears in the 
Disney movie Herbie Goes to Monte Carlo 
(1977). Here they get the physics right. Don 
Knots (in the car "Herbie" with his friend 
driving) yodels in the mountains, impressed 
with the echoes. They are actually lost and 
he is calling for help. A small avalanche 
starts, then stops. 

Bad guys show up, as the good guys 
were tricked into making a wrong turn 
during a race. But Herbie has the idea by 
now and begins to yodel (the car's horn). A 
larger avalanche occurs, where rocks land 
on the bad guys' car. 

 
R7. Rock Concert. There was a rock 
concert at Princeton during the 1970s 
where everyone starting stomping to the 
music. The gym started shaking. 
Remember, soldiers know 
to break step when 
walking across bridges. 
However, rock lovers don't 
know that they shouldn't 
stomp in unison inside a 
large auditorium. Police 
ran in to get the audience 
to stop. Can you imagine 
the confusion? 

Hippies entranced with 
the music probably didn't 
notice the police at first. 
With all the noise and 
distraction, some thought the police might 
be after them. Some probably shouted 
"Fuzz, Fuzz" to their friends, worrying about 
the "joint" they were passing around. The 

police had more urgent concerns - the gym 
itself. Well, the gym did not collapse. 

However, skywalks in a Midwest hotel 
did collapse in the early 1980s. People 
were dancing, so resonance was a 
possibility. But the investigation showed 
that the floor wasn't bolted correctly. The 
collapse was due to weight, not oscillations. 

 
R8. Jet and Construction. A jet (DC 10) 
on its way to landing at Chicago's O'Hare 
Airport flew over a stadium undergoing 
construction in 1979. Things shook, some 
of the structure collapsed, and tragically, 
five people were killed. The Asheville-
Citizen (August 14, 1979) reported that a 
worker described the event by saying 
"Suddenly, everything began to vibrate. You 
could hear the roof cracking and then it 
started falling in." 

The paper quoted a spokesman for the 
Federal Aviation Administration (FAA) 
stating that planes were flying "just a couple 
hundred feet" over the site. These are the 
clues for resonance - low-flying jets, 
sympathetic vibrations picked up in the 
unstable roof. However, the FAA 
spokesmen went on to say that he never 
heard of airplane turbulence causing any 
destruction on the ground. He obviously did 
not know his physics. It's not the air 
turbulence that caused the destruction, it 

was sound resonance! 
 
R9. The Walls of Jericho. Suppose a 
scientist who was not familiar with the Bible 
began studying the Bible with the Jericho 
story. What would our scientist learn about 
the characters and the events that transpire 
in the story? 
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Our scientist would first learn that 

Joshua is in some sort of trouble. Joshua is 
leading a group wandering in the desert. 
Joshua's people need to get into a city, but 
walls prevent them. So Joshua goes off to a 
desolate place to get help from God. 

Joshua hears a voice that responds to his 
requests and proceeds to tell him what to 
do. 

From what Joshua is told to do, our 
scientist concludes that God has a very 
insightful understanding of the laws of 
physics. Below we give the instructions 
Joshua receives and alongside include a 
scientific commentary of these instructions. 

Our guide here for the interpretation is 
what we know about resonance and 
physics. 

___________________________________________________________________________ 
 
 Bible 
 

Scientific Commentary 

"... On the seventh day march around the 
city seven times, and have the priests blow 
the horns. When they give a long blast on 
the ram's horn and you hear that signal, all 
the people shall shout aloud. The wall of 
the city will collapse, and they will be able 
to make a frontal attack."  Joshua 6:4-5 

    1. March Around - to spread out. 
    2. Blow the Horns - start the resonance. 
    3. Ram's Horn - resonance frequency. 
    4. Long Blast - so response builds up. 
    5. Shout - noise for reinforcement. 
    6. Collapse - due to resonance. 

_________________________________________________________________ 
 

Everyone needs to march around so 
that the sound can better reach the wall. 
The driven oscillations begin when the 
priests blow the horns. The ram's horn is 
important as its frequency is near the 
resonance frequency of the wall. It's 
necessary to a make a long blast so that 
the wall oscillations can build up. Having 
the people shout aloud adds to the ram's 
horn. Present in the overwhelming noise is 
the resonance frequency that reinforces the 
ram's horn. The collapse occurs when the 
stress limit is reached in the wall due to the 
resonance vibrations. 

Our scientist may wonder why God 
doesn't explain the physics to Joshua more 
fully. Probably, Joshua wouldn't understand 
it. Rather than confuse Joshua, it is more 
efficient to just tell him what to do. Note that 
Joshua is told the outcome. In this sense, a 
scientific principle is explained - sound can 
make a structure collapse (like our previous 
roof collapse caused by the low-flying jet). 

Our scientist may also wonder why God 
doesn't just knock out the wall for Joshua. 
Our scientist surmises that perhaps God 
interacts only through voice. But wait, God 
could then perform the "sound" resonance 
for Joshua. So our scientist concludes that 
God is willing to assist Joshua, who asks 
for help, but that Joshua has to do some of 
the work himself. How does our scientist's 
interpretation of the Joshua story compare 
to yours? 
 
R10. The Tacoma Narrows Bridge. 
Physics teachers have discussed the 
Tacoma Narrows Bridge as the 
"granddaddy" of resonance for several 
decades. The bridge was completed around 
1940. Winds were able to get the bridge 
oscillating dramatically. The wind in the 
ravine supplied the energy for the 
oscillations. If you are somewhat confused 
as to how the wind caused the oscillations, 
don't worry, so are many physics teachers. 
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Today we believe the oscillations were not 
caused by resonance, but rather by some 
more complicated interactions. 

For an obvious scenario of bridge 
resonance, consider a monster like King 
Kong giving gentle pushes on an 
appropriate place of the bridge at the right 
frequency. In a short time, the oscillations 
of the bridge build up impressively. This 
would be resonance. 

However, we include the Tacoma 
Narrows Bridge here for its historical 
association with resonance and its 
spectacular display of catastrophic 
behavior. 

The bridge's road surface oscillated in a 
twisting fashion. Such waves are called 

torsional waves.  The Tacoma Narrows 
Bridge collapsed one morning after about 
40 minutes of twisting. A film of the 
incredible oscillatory bridge motion is 
observational proof of the elasticity of solid 
structures. The bridge vibrated like a large 
string. There was plenty of time for all the 
cars except one to vacate the bridge. One 
car got stuck on the bridge. The driver of 
this car crawled toward one of the bridge's 
towers. He heard concrete crackling. He 
made it off the bridge. However, his main 
concern afterwards was how to explain to 
his daughter that he couldn't save her dog, 
who was riding with him in the car. 

 
 
In 1995, a commercial advertising a 
Pioneer Sound System used footage from 
the Tacoma Narrows Bridge Collapse. They 
sped up the movie. The commercial won 
1995 Grand Clio Award, the top award for 
cleverness and creativity in advertising. 
 
Chladni Plates 
 
The German physicist Ernst Chladni 
(KLAD-knee), regarded by some as the 
father of acoustics, discovered an ingenious 
way to visualize resonance vibrations of a 
plate. You sprinkle some sand or white 
powder on the plate and then use an 
oscillator to produce frequencies. When you 
hit a resonance frequency of the plate, the 
plate goes wild. Regions where the plate 
vibrates become free of the powder as it 
gets shaken off. However, some paths 
along the membrane do not move and the 
white powder stays there. 
 

One finds beautiful patterns for the various 
modes of vibrations. Plates are two 
dimensional and very complicated 
compared to the thin strings and pipes will 
be discussing later. Strings and pipes are 
more like one-dimensional structures as the 
long length predominates over the small 
cross-sectional area. 
 
Fig. B-9. Chladni Pattern 
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--- End of Chapter B --- 


