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Abstract 

The harmonics for a complete cone with slant height L  and open at the large end are the same as 

that for an open pipe of the same length L . When the cone is transformed through phases of 

closed-open conical frusta into a cylinder of length L  closed at one end, the fundamental halves 

and only odd harmonics remain. A simple approach using boundary conditions is presented in 

order to understand this remarkable fact. A new free interactive HMTL5 application is provided 

which enables the user to hear the resonances of a complete cone transform into the pitches of a 

conical frustum closed at the small end, and eventually into the odd harmonics of a closed 

cylindrical pipe.  

__________________________________________________________________________ 

Background 

In the standard approach to standing waves (stationary waves) in open pipes, n  half-waves are 

fitted to the pipe length L , where n  is 1, 2, 3, … etc. For a pipe closed at one end, i.e. a closed 

pipe, m  quarter-waves are fitted to L , where m  is an odd number 1, 3, 5, … etc. These 

procedures are described by the following formulas. 

Open Pipe 
2

n L

  1,2,3...n    (1a) 

Closed Pipe 
4

m L

  1,3,5...m    (1b) 
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Figure 1. First longitudinal standing waves for an open pipe and a closed pipe. The curves 
indicate the pressure changes relative to equilibrium pressure for the longitudinal waves.  
 

 The first standing wave, the fundamental, is shown for an open pipe and closed pipe in 

figure 1. The transverse sinusoidal curves indicate the changes in pressure relative to equilibrium 

pressure at each position along the length of the pipe for the longitudinal standing wave. The 

relative pressure referenced to atmospheric pressure is called the gauge pressure. At an open end,  

the pressure is equal to atmospheric pressure and therefore the gauge pressure is zero. Such a 

location is called a pressure node. In contrast, a pressure antinode is found where maximum 

pressure changes occur, e.g. at a closed end.  

 An interesting consideration often neglected in texts is a reasonable restriction on the 

length L  compared to the diameter d  of the pipe. Surely, if L  gets too small, the pipe becomes 

a circular band and the standing waves are lost. Students can be encouraged to make an estimate 

here. Someone might suggest d L  or d  . The condition d   for the closed pipe leads 

to 
4L

d
m

 . Since this paper investigates several harmonics, we use 
4

10

L
d   as an order of 



magnitude estimate. Taking one-half this limit gives a reasonable bound where the „much less 

than‟ sign is replaced merely by a „less than‟ sign: 

5

L
d  .     (2) 

Such an exercise in reasoning develops critical thinking skills. 

 Finally, equations (1a) and (1b) can be expressed in terms of frequencies using the wave 

relation v f , where v  is the speed of sound and f  is the frequency of the wave. The 

resulting frequencies are called harmonics.  

Open Pipe 
2

n

nv
f

L
  1,2,3...n    (3a) 

Closed Pipe 
4

m

mv
f

L
  1,3,5...m    (3b) 

The approach using boundary conditions 

Imposing boundary conditions at each pipe end leads to an analysis of conical pipes accessible to 

introductory students. It is instructive to first reproduce the results in the last section with the 

new approach before proceeding to the more complicated conical frustum. The simplest periodic 

functions are sines and cosines: sin( )A kx  and cos( )C kx , where the wave number 
2

k



 . We 

use the constant C  for the cosine since we are reserving B  for another purpose in this paper. 

The sine wave is “nature‟s wave,” pervasive everywhere. The sines and cosines describe 

oscillations on springs, the swinging pendulum, waves on strings, electromagnetic waves, atomic 

vibrations and much more. Here these periodic functions are applied to pipes.  

For the open pipe, take ( ) sin( )p x A kx  as the profile of the pressure wave so that 

(0) 0p  , i.e. the gauge pressure must be zero at the left open end. Note that a suitable 

oscillatory time factor such as cos( )t  is left out so the focus is on the pressure profile function. 



This boundary condition at the left open end, where 0x  , eliminates the inclusion of cos( )C kx . 

The boundary condition at the right open end requires ( ) sin( ) 0p L A kL  . This second 

boundary condition leads to kL n , where 1,2,3...n   Substituting 
2

k



 , gives 

2
L n





 , 

which is equivalent to equation (1a), 
2

n L

 . 

For the closed pipe, take the pressure profile function to be ( ) cos( )p x C kx  so that 

maximum pressure variation occurs at the closed left end, i.e. (0)p C . The boundary condition 

at the right open end is ( ) cos( ) 0p L C kL  . This second boundary condition leads to 

2

m
kL  , where 1,3,5...m  , giving equation (1b), 

4
m L

 . 

The conical frustum and transcendental equations 

The study of resonances in conical structures dates back to Nobel Laureate John William Strutt 

(1842-1919), known as Lord Rayleigh. Rayleigh works out the solution using the three-

dimensional wave equation with spherical coordinates in the second edition (1896) of his 

masterpiece The Theory of Sound. [1] Rayleigh‟s solution can be written down without recourse 

to differential equations by modifying the sine and cosine functions encountered earlier with the 

replacement of kr  for kx  and dividing by r . The general solution is 

sin( ) sin( )
( )

A kr C kr
p r

r r
  ,     (4) 

where the coordinate r  is measured from the apex of the conical configuration outward along the 

slanted edge of the cone. Refer to figure 2. 

The radial coordinate is dictated by the symmetry of the cone with the coordinate r  

measured from the origin at the tip of the cone. The 
1

r
 factor is needed due to the inverse-square 



law for the energy as the wave travels outward in three dimensions. Since the energy is 

proportional to the square of the amplitude, 
1

r
 must appear in the amplitude equation. The sketch 

in figure 2 illustrates a sliced conical pipe closed at the smaller left end and open at the larger 

right end. The choice of closed small end with an open large end is made to model conical bores 

in musical instruments. Two examples are the saxophone and tuba, where the mouthpiece serves 

as the small closed end and the bell flare is attached to the open end.1 

 

Figure 2. Conical frustum closed at the smaller left end where the pipe diameter is a  and open at 

the larger right end where the pipe diameter is b . The slanted length of the conical pipe is L . 

The figure is not drawn to scale since b  should be less than 
5

L
 as explained in the first section of 

this paper. 

 

 Boundary conditions need to be set for figure 2 at the closed end ( 0r r ) and the open 

end ( 0r r L  ). For the right boundary condition at the open end, the gauge pressure 

0( ) 0p r L  .     (5) 

                                                 
1
 The flare is joined to the large open end of the conical bore. 



The following approach is along the lines of the work of Ayers, Eliason, and Mahgerefteh [2]. 

Choosing 

 0sin ( )
( )

A k r L r
p r

r

 
     (6) 

satisfies this boundary condition for a gauge pressure node at 
0r r L  , i.e. the open right end. 

For the closed end at the left,  

0

( )
0

r r

dp r

dr 

     (7) 

since for the pressure antinode, the profile of the gauge pressure function must be a maximum 

(extremum), as seen for the closed pipe in figure 1. The details of working out equation (7) are 

found in the Appendix. The result is the transcendental equation   

     tan ( ) ( )
1o o

f B f

f B f
 
   

      
,   (8) 

where 
2

o

v
f

L
 , the fundamental for an open pipe of length L  and 

a
B

b
 , the ratio of the 

smaller diameter at the closed end to the larger diameter at the open end (see figure 2). Equation 

(8) is a transcendental equation which will shortly be solved numerically. But first consider the 

two interesting limiting cases: the complete cone ( 0)a  and the closed cylindrical pipe ( )a b . 

The limiting cases: the complete cone and the closed cylindrical pipe 

Now come two big surprises. In the limiting case of a complete cone ( 0)a  , the 

parameter 0
a

B
b

   and equation (8) reduces to 

tan ( ) 0
o

f

f

 

 
 

.          (9) 



The solutions are ( )
o

f
n

f
  , which immediately leads to the astonishing result 

     
0

2
n

nv
f n f

L
  ,       (10) 

equation (3a) for the open pipe. Therefore, the conical pipe of slant length L  has the identical 

harmonic series as an open cylindrical pipe of length L . 

 Now consider the limiting case where the closed conical frustum turns into a cylindrical 

closed pipe ( )a b . Since this condition leads to 1
a

B
b

  , we are careful to take a limit to 

avoid dividing by zero: 

1
tan ( ) lim ( )

1B
o o

f B f

f B f
 



   
      

.   (11) 

The tangent function approaches negative infinity at 
π 3π 5π

, , 
2 2 2

 and so on for positive values of 

f . Therefore, ( )
2o

f
m

f


  where m = 1, 3, 5 ...  This equation leads to the odd series of 

harmonics for a closed cylindrical pipe of length L  with fundamental 0

2

f
, 

0

2 4
m

f mv
f m

L
   with m = 1, 3, 5... ,   (12) 

which is equation (3b) encountered earlier for the closed pipe. This is the second big surprise. 

How can the harmonic series of all harmonics (complete cone) transform into a series of 

only odd harmonics (cylindrical closed pipe)? Let the harmonic sequence Hcone be 200 Hz, 400 

Hz, 600 Hz, 800 Hz, 1000 Hz, etc. Equation (12) indicates that for the cylindrical closed pipe, 

the starting fundamental frequency is one half that for the open pipe. In musical terms, the 

fundamental for the cylindrical closed pipe is an octave lower. Consider subtracting 100 Hz from 



each frequency in the sequence Hcone. The new series is 100 Hz, 300 Hz, 500 Hz, 700 Hz, 900 

Hz, etc., which can be called the sequence Hclosed. Both odd and even harmonics of Hcone have 

mathematically transformed into only the odd harmonics Hclosed where the fundamental is an 

octave lower. The next section will explicitly show how this remarkable transformation occurs 

by graphing the numerical solutions as a function of B . 

The general case for the conical frustum 

Defining ( )
o

f
x

f
  and 0

1

B
s

B
 


, equation (8) for the general conical frustum becomes 

tan x sx  .     (13) 

Equation (13) can be solved numerically by superimposing the plots for tany x  and y sx  . 

The parameter s  is chosen for slope instead of the usual m  to avoid confusion with m  

representing odd integers in this paper. 

Many numerical solutions are necessary since for each B  there is a slope s  with its 

corresponding series of resonance frequencies. Figure 3 illustrates the method for the family of 

resonance frequencies given by equation (13). The overlapping points are the solutions, where 

the frequencies f  are determined from the definition ( )
o

f
x

f
 .  

 

 



Figure 3. Solving the transcendental equation tan x sx   by superimposing the graphs tany x  

and y sx  . The intersection points are the solutions for the values of x , from which the 

resonance frequencies are found: o

x
f f


 . 

 

The conditions for a complete cone are 0a  , 0
a

B
b

  , and 0
1

B
s

B
 


. The slope of 

the y sx   line shown in figure 3 must be zero for the complete cone. Therefore for this case, 

the linear graph is the horizontal line 0y  . The intersection points give the solutions 

( )
o

f
x n

f
   , which is equivalent to n of nf . These solutions demonstrate that the complete 

cone of slant height L  has resonance frequencies identical to the harmonic series for an open 

pipe of length L , which was noted earlier in equation (10). 



The conditions for a closed cylindrical pipe are a b , 1
a

B
b

  , and 
1

B
s

B
 


. 

Transforming the cone into a closed cylindrical pipe requires that the line y sx   swing 

downward approaching the vertical axis. This very steep line of negative slope intersects the 

tangent lines at ( )
2o

f
x m

f


  , where m  is odd, which is equivalent to 

2

o
m

f
f m . Therefore, 

the closed (cylindrical) pipe of length L  has odd resonance frequencies with a fundamental an 

octave lower than an open (cylindrical) pipe of the same length. This observation was noted 

earlier in equation (12). 

Visualizing the rotation of the line with zero slope to a line approaching negative infinite 

slope reveals how the solution of all harmonics transforms to odd harmonics with a fundamental 

reduced by an octave. A plot of 
o

f

f
 as a function of B  is given in figure 4 for the first eight 

resonances, revealing the transformation as one moves from 0B   (complete cone) to 1B   

(closed cylindrical pipe). The values for figure 4 were obtained using Mathematica. [3] Note that 

the harmonics for the general conical frustum have non- integral ratios. 



 

Figure 4. Plots of the first eight resonance frequencies of a conical frustum (slant length L  and 

closed on the smaller end) relative to the fundamental frequency of an open pipe of length L . 

The value 0B   indicates a complete cone and 1B   defines a closed cylindrical pipe. 
 

 What about the cone angle? Earlier in equation (2) we gave an estimate on the restriction 

for the diameter d  of a closed cylindrical pipe to be 
5

L
d  . Therefore we want the larger 

diameter 
5

L
b  . Let   be the angle of the cone. Then, 

/ 2 1 1 1 1
sin

2 2 2 5 10

b b

L L


     and 

1 1
sin 5.7

2 10

    , giving 11   . The oboe, bassoon, saxophone, and tuba are among the 

instruments using conical bores. Though at first glance the maximum of 11  may seem small, 



musical instruments that use conical bores easily meet the criterion. Several instruments that 

employ conical bores are listed in table 1. Four woodwinds [4] and the tuba 2 are included. All 

cone angles satisfy the condition 11   . 

 

 

 

 

 

 

 

Table 1. Conical bore angles for common musical instruments. All bore angles meet the 11    
requirement. 

 

The HTML5 app: hearing the resonances 

The author has written an HTML5 app so that readers and students can hear the first eight 

resonances transform from those of a complete cone to those of a closed cylindrical pipe. [5] A 

video abstract of this paper demonstrating the app and additional musical connections is 

provided. [6] The small end correction3 for the open end is neglected since the diameter of the 

open end is not varied and this diameter can be considered to be very small compared to the 

length of the pipe. The emphasis instead is on the transformation of a complete cone into a 

closed cylinder as 0 1B  , shown in figure 4. The user can turn on and off any one of the 

                                                 
2
 The F tuba result was found from estimating the rad ius at the end of the conical section that attaches to the flare to 

be 8 cm. The main conical section for the F tuba is 3.66 m. Therefore, the bore angle is  = 2 sin
-1

 (8/366) = 2.5°. 
3
 End corrections imply that 0.61r be added to the physical length L due to the open end where r is the radius at the 

open end. The pressure node extends a little beyond the open end of the pipe. 

Instrument Conical Bore Angle 

Oboe 1.4° 

Bassoon 0.8° 

Soprano Saxophone 3.5° 

Tenor Saxophone 3.0° 

F Tuba 2.5° 



harmonics and scan the cases from complete cone ( 0B  ) to closed cylinder ( 1B  ). Students 

familiar with music can have fun comparing intervals and chords. 

 As an example, the interval between the first harmonic (H1) and second harmonic (H2)  

for the complete cone ( 0B  ) has a ratio H2:H1 = 2:1, an octave. By the time the user has 

scrolled to the closed cylinder ( 1B  ), the ratio is 1.5:0.5 = 3:1, an octave (2:1) plus a musical 

fifth (3:2) since 
3 2 3

1 1 2

   
    
   

. As another example, H3:H2 = 3:2 on the complete cone end and 

2.5:1.5 = 5:3 on the closed cylinder end. Playing the H2 and H3 tones for the complete cone 

defines the beginning interval for the song “Twinkle, Twinkle, Little Star.” The 5:3 interval for 

the closed cylinder is a perfect major 6th, the beginning of the song “My Bonnie Lies Over the 

Ocean.” 

 Users can explore any combination of the eight resonances played simultaneously. Menu 

choices for a sample triad, tetrad, and pentad are included with some others. The app is rich in 

musical intervals, non- integral tunings, and physics. 

Conclusion 

The first eight resonances of a closed conical frustum have been analyzed and can be 

demonstrated with the use of the included HTML5 app. [5] The software consists of one code 

file along with a few image files that can be run online or downloaded in a combined zip file and 

run on a computer offline. The source code is found in the single code file documented with 

comments for computer programmers who would like to play with the code. The HTML5 app 

brings to life the solutions of the transcendental equations that emerge from the boundary 

conditions of the conical frustum. 



An added profound pedagogical bonus can be extracted from this paper. Many years ago 

my undergraduate quantum mechanics teacher4 told me that the secret back door entrance into 

quantum mechanics was through the discrete harmonics of strings and pipes. Students can be 

challenged to think of something in classical physics that requires specific energy levels or 

modes. See if they can come up with standing waves on vibrating strings or the tones of a pipe.  

 Modern physics texts show that equation (1a) in conjunction with de Broglie‟s relation 

h
p


  and 

2

2

p
E

m
  can be used to derive the exact quantum mechanical quantized energies for 

a particle of mass m  in an infinite square well of width L . [7] Furthermore, the numerical 

approach to solving the transcendental equation for the conical frustum is the technique 

employed to find the bound-state energies for a particle in a finite square well. [8] Functions of 

the form tany x x  and 2 2 2x y R   can be overlapped in the first quadrant, providing 

intersections similar to the points highlighted in figure 3. [9] These solutions represent the bound 

states.5 

 In summary, the challenging problem of the closed-open conical frustum, where the 

closed end has the smaller diameter, has been presented in a basic way avoiding differential 

equations. The analysis reveals why all harmonics are relevant in musical instruments with 

conical bores (see table 1) and why the odd harmonics with a lowered fundamental (by an 

octave) apply to musical instruments with cylindrical closed pipes such as the clarinet. Finally, 

the approach in this paper leads the student through steps encountered in quantum mechanics, 

where boundary conditions lead to quantized energies. In our case, we find quantized 

                                                 
4
 J Richard Houston (1935-2011), Professor of Physics for over 50 years at St. Joseph‟s University, Ph iladelphia, 

PA, USA. 
5
 Overlapping y = x tan x with the appropriate circle function in the first quadrant leads to the even wave-function 

solutions while using y = -x cot x with the circ le g ives the odd solutions. For another approach, see reference 7 

where the parametrization does not use a circle but another function. 



frequencies. The HTML5 app allows one to hear these specific frequencies over the range of 

conical frusta from a complete cone to the closed cylinder. 

 

Appendix 

The derivative of equation (7) can be worked out using the product rule 

( ) ( )dp r d uv du dv
v u

dr dr dr dr
   , where 

1
u

r
  and 

0sin[ ( )]v A k r L r   . The result is 

   0 0

2

sin ( ) cos ( )( ) A k r L r A k r L rdp r
k

dr r r

   
   .  (A1) 

Imposing the boundary condition at 
0r r , 

   0 0 0 0

2

0 0

sin ( ) cos ( )
0

A k r L r A k r L r
k

r r

   
   .   (A2) 

Algebraic manipulation gives 0sin( ) cos( ) 0kL kr kL  , 
0

sin( )
0

cos( )

kL
kr

kL
  , and finally 

      0tan( ) 0kL kr  .       (A3) 

Using 
2

k



  and v f  leads to 

2 f
k

v


 .  Let 

2
o

v
f

L
 , the fundamental for an open pipe of 

length L . [2] Then 2 ov Lf , 
2 2

2 o o

f f f
k

v Lf Lf

  
    and 

o

f
kL

f
 . Equation (A3) becomes 

0tan ( ) 0
o

f
kr

f

 

  
 

, which can written as 

0tan ( ) ( )
o o

rf f

f f L
 
   

    
   

    (A4) 

Define 
a

B
b

 , the ratio of the smaller diameter to the larger diameter. [2] The introduction of 

this parameter enables consideration of the limiting cases where the pipe is a complete cone 



( 0B   when 0a  ) and a closed cylindrical pipe ( 1B   when a b ). From similar triangles in 

figure 2, 0

0

ra
B

b r L
 


. To obtain the explicit appearance of B  in equation (A4), we need to 

solve for 0r

L
 in terms of B . The result is 

0

1

r B

L B



.     (A5) 

Substituting equation (A5) into equation (A4) leads to 

tan ( ) ( )
1o o

f B f

f B f
 
   

      
,   (A6) 

which is the desired equation (8) found earlier in the paper. 
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