
Michael J. Ruiz and James Perkins, “The Monster Sound Pipe,” Physics Education 52, 025002 
(March 2017). One of the papers in the journal’s highlighted list for 2017.  
 

The monster sound pipe 

Michael J Ruiz and James Perkins 

Department of Physics, UNC Asheville, Asheville, North Carolina, USA 

E-mail: mjtruiz@gmail.com and perkins@unca.edu 

Abstract 

Producing a deep bass tone by striking a large 3 m (10 ft) flexible corrugated drainage pipe 
immediately grabs student attention. The fundamental pitch of the corrugated tube is found to be 
a semitone lower than a non-corrugated smooth pipe of the same length. A video 
(https://youtu.be/FU7a9d7N60Y) of the demonstration is included, which illustrates how an 
Internet keyboard can be used to estimate the fundamental pitches of each pipe. Since both pipes 
have similar end corrections, the pitch discrepancy between the smooth pipe and drainage tube is 
due to the corrugations, which lower the speed of sound inside the flexible tube, dropping its 
pitch a semitone. 
__________________________________________________________________________ 

Background 
 
Popular corrugated toy tubes that are twirled 
to obtain sounds have been around for decades 
[2–5]. The corrugated drainage pipe is a 
‘monster’ version of the toy tube. One can 
spin the drainage tube outdoors and obtain a 
few overtones,1 however the fundamental can 
be produced by tapping the tube [2]. The 
amusing outdoor demonstration to play 
overtones by swinging the tube around one’s 
head is included in the accompanying video 
[1]. However, the main focus here is on the in-
class demonstration of tapping corrugated and 
smooth pipes in order to compare their 
fundamentals. 
 
 
The Demonstration 

 
1 Harmonics above the fundamental. 

 
One day at home, one of the authors (MJR) 
observed a landscape expert (David J Link) 
carrying a 10 ft (3 m) drainage pipe for use in 
directing water away from a rainspout. A nice 
deep bass tone was heard when David threw 
the drainage pipe to the ground. Slapping the 
drain pipe readily produced the same tone. It 
wasn't long before the demonstration 
described in this paper became a favorite at 
our school. 

See figure 1 for a photo of the drainage 
tube in class. Shane and the instructor (MJR) 
hold each end as Valerie smacks the tube to 
obtain the fundamental. The note on the 
keyboard is located that best matches the tone. 
Pulling up an Internet keyboard is actually 
better since the students can then see all the 
keys clearly. Also, traditional keyboards are 
usually not available in physics classes. Other 
measurement methods can be explored such as 
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using an oscilloscope, bass guitar tuner, or a 
pitch-detection app on a smartphone. Before 
discussing the results of the demonstration, the 

basic theory of open-pipe tone generation is 
presented. 

 

Figure 1. The 10 ft (3 m) drainage tube in class. The keyboard is used to match the frequency 
when the tube is smacked. The matched tone is found to be a semitone lower than the theoretical 
predicted value of A1 = 55 Hz. 
 
Basic open-pipe theory 
 
A smooth open pipe of length L  has a 
fundamental wavelength 2L  .  Refer to 
figure 2 for an illustration of the fundamental 
standing wave in an open pipe where the sine 
shapes indicate the changes in pressure of the 
longitudinal wave along the pipe. Because the 
ends connect to the atmosphere where the 
pressure is constant (equal to atmospheric 

pressure), the end locations are pressure nodes. 
On the other hand, the pressure at the center of 
the pipe fluctuates in a sinusoidal fashion from 
a minimum (rarefaction) to a maximum 
(compression). This location where maximum 
changes in pressure occur is a pressure 
antinode. 

 
 
 
 
 
 

Figure 2. Fundamental standing wave in an open pipe. One half-wave, 
2


, fits in the pipe of 

length L  so that the wavelength 2L  , i.e. twice the length of the pipe. 



From the wave relation v f , the 

frequency for the fundamental, i.e. the first 
harmonic, is 

              
2

v v
f

L
  .           (1) 

 
In the units of the manufacturer, the pipe 
length is 10.0 ft and the speed of sound (to 

two significant figures) is 11100 ft s , giving 
an estimated frequency 

 

    
11100 ft s 110

55 Hz
2 2(10 ft) 2

v
f

L


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Using British Imperial units, this calculation is 
mathematically easy enough to do without a 
calculator, allowing students to focus more 
intently on the physics. The simple math is an 
ideal feature when doing this demonstration 
for general students. The International System 
of Units (SI) can also be used with the 

approximate value 1330 m s  for the speed of 
sound and 3 meters for the 10 ft pipe length in 

order to obtain a similar mathematical 
simplification, 
 

       
1330 m s 110

55 Hz
2 2(3 m) 2

v
f

L


    .    (3) 

 
This value brings us to our second fortuitous 
simplification – the piano key for this pitch 
can be precisely located on the keyboard. 

Refer to figure 3 to see that middle A, 
the famous reference tone to which orchestras 
generally tune, is in the fourth octave on the 
piano. Middle A has a frequency 

4 440 HzA  . After dropping down an octave 

to 3 220 HzA  , proceeding to drop by an 

octave two more times leads to 2 110 HzA   

and 1 55 HzA   respectively. With a full-

sized Internet keyboard [6] the pipe frequency 
can be determined experimentally by 
matching the tone produced by the pipe with 
the proper key struck on the keyboard. 

 

Figure 3. Piano keyboard showing concert A4, three octaves below 440 Hz, and the note ( 1
bA ) 

that best matches the tone produced by tapping the corrugated drainage tube. 
 



To everyone’s surprise, the piano note 
matching the generated tone from the long 

corrugated tube is 1
bA  (see figure 3), a 

semitone lower than the predicted 1A . In equal 

temperament, the frequency of the adjacent 
higher semitone is found by multiplying the 

starting frequency by 12 2 1.059... 1.06  , 
while the adjacent lower semitone is 
determined by multiplying by 

12

1
0.943... 0.94

2
  . Therefore, the observed 

frequency is approximately 6%  lower than 
the predicted value. This observation is also 
true for the toy corrugated pipes, pointed out 
by Crawford [2] in 1974. 

The discrepancy is analyzed with 
mathematical models in the following sections 
of this paper. For a general introductory class, 
the teacher can mention that the corrugations 
lower the speed of sound due to air pockets 
inside the rippled cavities. This fact is 
demonstrated in class by listening to the tone 
produced by a smooth 3 m (10 ft) pipe [1]. 
With the non-corrugated smooth pipe, the 
pitch is perceived to match the frequency 
estimated by the ideal open-pipe formula. 

End corrections need not be mentioned 
since their effects apply to both the smooth 
and corrugated pipes. In discussing the lower 
pitch of the corrugated pipe relative to the 
higher pitch of the smooth pipe, the 
differential determining factor is the 
corrugated design of the drainage pipe. 

 
End-pipe correction 
 
Two factors come into play in extending the 
simple pipe model to more precise pipe 
models. These factors are the end-pipe and the 
corrugated-pipe corrections. The end 
correction is considered in this section, which 
applies to both the smooth pipe and the 
corrugated pipe. 

The pressure nodes extend a little 
beyond each end of an open pipe, making the 

pipe length effectively longer. To correct for 
end effects,   

 
                  0.61L r              (4) 

 
must be added to the pipe length L  for each 
open end, where r  is the inner radius of the 

pipe and 
2

1
r

kr



   [7–9]. For the white 

smooth pipe used in the video [1], 
50.8 mmr   (2.0 inches ), and 

2 2 (3048mm) 6096 mmL     (20.0 feet ). 

Therefore, 
2 2 (50.8 mm)

0.05 1
6096 mm

r 


   , 

which means that the end-correction equation 
(4) can be applied to the pipe. Equation (4) 
was derived by Levine and Schwinger [9] in 
1948. Coauthor Julian Schwinger is the 
famous physicist who shared the 1965 Nobel 
Prize with Feynman and Tomonaga for work 
in quantum electrodynamics. 

Incorporating the end correction, the 
pipe length is increased by adding equation (4) 
twice, once for each end, giving an effective 
length ' 2(0.61 ) 1.22L L r L r    . The 

revised formula for the fundamental frequency 
of equation (1) becomes 

 

          
2 ' 2( 1.22 )

v v
f

L L r
 


.            (5) 

 
Since a finer model is being employed, a more 
precise value for the speed of sound at room 
temperature should be used as well as actual 
measurements of the dimensions of the 

specific pipe. These values are -1345 m sv    

( -11132 ft s ), 3.048mL   (10.0 ft) , and 

50.8 mmr   ( 2.0 inches ). Using the above 

values in equation (5) gives the frequency 
 

-1345 m s

2 ' 2(3.048 1.22 0.0508)m

v
f

L


 

 
 

 



                     55.47 Hz 55 Hz  .           (6) 
 

Note that the uncorrected formula, equation 

(1), gives
-1345 m s

56.59 Hz 57 Hz
2 2(3.048m)

v
f

L


    . 

Therefore, with this more detailed analysis, it 
can be seen that the end correction brings the 
fundamental more in line with the 55 Hz key 
on the piano. The discrepancy of 1.12 Hz 
between the corrected 55.47 Hz and 
uncorrected 56.59 Hz, before rounding, is 2%; 
i.e. the end correction lowers the pitch by 2%. 

To better compare the theoretical 
corrected value of 55 Hz with experiment, a 
more precise measurement needs to be made 

for the fundamental produced by the smooth 
pipe than simply estimating its frequency on a 
keyboard. The sound from dropping the 
smooth white pipe in the video [1] can be 
analysed by the free audio software Audacity 
[10]. The sound of the dropped pipe produces 
the first few harmonics plotted in figure 4. The 
linear fit indicates that the fundamental 
frequency is 55 Hz, which is the value 
predicted by theory. Comparing the values 
before rounding off, the experimental value of 
55.055 Hz from figure 4 is 0.412 Hz from the 
theoretical 55.467 Hz of equation (6), a 
discrepancy less than 1%. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Plot of harmonics present in the spectrum when a smooth 3 m (10 ft) pipe is dropped. 
The linear fit gives a fundamental frequency of 55.055 = 55.1 Hz. The pitches are measured by 
the free audio software program Audacity [10]. 
 

The corrugation correction 
 
The corrugated tube is more complicated 
because the end correction is accompanied by 
the additional corrugation correction. A 
further complication appears since one end of 

the corrugated tube is constructed with a small 
section having a slightly larger inner radius to 
allow the drainage tubes to be connected in 
series. The two inner radii of the corrugated 
pipe are 52 mmr   at one end and 

58 mmR   at the larger end. Therefore, the 



effective pipe length, applying equation (4) 
appropriately for each end, is 
 
  ' 0.61 0.61 0.61( )L L r R L r R      .   (7) 

 
One can think of the correction due to 

the corrugations in the pipe as a reduction in 

the speed of sound in the tube. The model of 
Nakiboğlu, Belfroid, Golliard and Hirschberg 
[11] can be employed to determine an estimate 
of the reduced sound speed. The relevant 
parameters in their model are found in figure 
5, which is adapted from their paper [11]. 

 
 

 

 

 

 

Figure 5. Corrugated-pipe section (not to scale) adapted from Nakiboğlu, Belfroid, Golliard and 
Hirschberg [11] with parameters relevant to the formula giving the speed of sound in the tube. 
 

In figure 5, not drawn to scale, 
52 mmr  , the inner radius of the pipe for the 

main length of the pipe. The parameter p  is 

called the pitch, which gives the distance for 
one of the repeating corrugated patterns. The 
width of a corrugated ridge is w  and the 
height of the ridge is h . The speed of sound in 
the pipe given in reference 11 is provided by 
Valdan, Gratton, Zendri and Oss [4] in the 
following very convenient form:  
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The formula incorporating both the end 

and corrugated corrections is then 
'

'
2 '

v
f

L
 , 

where equation (7) is substituted for 'L  and 
equation (8) for 'v . The combined result is 
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Since 
2wh

rp
 and 

( )
0.61

r R

L


 are small 

quantities  , we can use (1 ) 1n n   , 

with 
1

2
n    for the velocity correction and 

with 1n    for the end correction. With these 
excellent approximations, equation (9) can be 

replaced with ( )
' (1 )[1 0.61 ]

2

v wh r R
f

L rp L


  , 

which can be further reduced to 
 

        
( )

' 1 0.61
2

v wh r R
f

L rp L

 
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neglecting the very small second-order 
( )

2 [0.61 ]
wh r R

rp L


 term. 

Equation (10) is very useful because it 
clearly reveals the corrections for the 
corrugation and pipe ends as subtracting from 
the uncorrected value. For the corrugated tube, 

8 mmw  , 7 mmh  , 18 mmp  , 

52 mmr  , 58 mmR  , and 3083 mmL   

(
3

10ft and 1 inch
8

by direct measurement). 

The parameters w  and h  of the corrugated 
ripples have low precision due to their small 
values and lack of uniformity in the 
corrugations throughout the pipe. 

 With the above values and 
-1345 m sv   , equation (10) becomes 

 
' 56.0(1 0.0598 0.0218) 51.4 Hzf    . 

                                                                 (11) 

Note that the reduction in pitch due to the end 
effects is 2% as found earlier with the smooth 
pipe. This 2% drop in pitch occurs for both the 
smooth and corrugated pipes. The additional 
drop in pitch due to the corrugations is 
predicted to be 6.0% from equation (11), 
which is essentially the 5.9%  that corresponds 
to a semitone. 

In order to directly compare the 
theoretical 51.4 Hz of equation (11) to the 
observed value, Audacity is used to obtain the 
best measured value in hertz for the 
corrugated fundamental. Figure 6 is a plot of 
the harmonics obtained from the sound 
produced by swinging the long corrugated 
drainage pipe over one’s head as shown in the 
video [1]. The fit indicates an experimental 
fundamental equal to 52.0 Hz. Therefore, for 
the fundamental of the corrugated pipe, the 
experimental 52.0 Hz from the data in figure 6 
is about 1% from the theoretical 51.4 Hz of 
equation (11). 

 

 

 

 

 

 

 

 

 

 

Figure 6. Plot of harmonics from twirling a corrugated 3 m (10 ft) pipe over one’s head. The 
linear fit gives a fundamental frequency of 52.0 Hz. The pitches are measured by the free audio 
software program Audacity [10]. 



 

Additional fun demonstrations 
 
The video [1] includes three related 
demonstrations. Two students can play the 
theme from the movie Jaws (1975), composed 
by John Williams, by tapping in an alternating 
fashion the 3 m ( 10 ft) corrugated pipe and a 
3 m (10 ft) smooth pipe. This performance is 
possible since the Jaws theme repeatedly 
switches between two tones separated by a 
semitone, creating the characteristic 
suspenseful effect in the film. For another 
movie example, the toy version of the 
corrugated pipe can be used to play the 
beginning of the theme2 from 2001: A Space 
Odyssey (1968), which consists of harmonics 
2, 3, 4, and 5 [5]. Note that the first harmonic 
is skipped when you twirl the toy tube [2]. 
Finally, one can take the monster version of 
the corrugated tube outside and twirl it with 
some amusing difficulty. Harmonics 3, 4, 5, 6, 
and 7 are briefly obtained in the video [1]. The 
demonstration of a professor or student 
attempting to twirl a 3 m (10 ft) flexible pipe 
overhead is very memorable. 

 
Conclusion 

 
A theatrical demonstration where students 
strike a 3 m (10 ft) corrugated drainage pipe 
and compare the experimentally generated 
tone to that predicted by basic theory 
persuasively introduces students to pipe 
physics. The actual pitch produced is a 
semitone (5.9%) lower in frequency as 
determined by matching the tone with a piano 
or Internet keyboard [6]. The contributing 
factor of the reduced pitch of the corrugated 
tube relative to a smooth pipe is due to the 
decrease in sound speed in the tube with the 
corrugations. 

 
2 The theme is Also sprach Zarathustra (1896) by 
Richard Strauss (1864-1949). The first 4 trumpet tones 
are harmonics 2, 3, 4, and 5 respectively. 

In a course for non-science majors one 
can present the mathematics of the ideal open 
pipe and stay away from the math involving 
the corrections. However, the teacher can 
briefly mention the cause for the pitch 
discrepancy in a conceptual manner, namely, 
the reduction in the speed of sound due to the 
corrugations. When a smooth 3 m (10 ft) pipe 
is dropped, the tone produced is perceived to 
be in agreement with the theoretical estimate 
form the ideal pipe model. For a higher-level 
course, the entire analysis found in this paper 
can be presented. Regardless of the student 
level, the drainage-pipe demonstration is 
visually striking, entertaining, and 
informative. 
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