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A Black Hole in Our 
Galactic Center
Michael J. Ruiz, University of North Carolina at Asheville, Asheville, NC

An introductory approach to black holes is pre-
sented along with astronomical observational 
data pertaining to the presence of a supermas-

sive black hole at the center of our galaxy. Concepts 
of conservation of energy and Kepler’s third law are 
employed so students can apply formulas from their 
physics class to determine the mass of the black hole 
that resides in the center of the Milky Way.

We first derive the formula that gives the condition 
for a black hole from conservation of energy. Students 
encounter the conservation of energy formula where 
the kinetic energy plus potential energy at one point is 
set equal to that for a second point: A common appli-
cation is to find the escape velocity v from a celestial 
body of mass M and radius R where atmospheric fric-
tion is neglected. We send a projectile of mass m with 
speed v from the surface of our large body so that the 
projectile comes to rest at infinity. The conservation 
of energy equation then gives:
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at r = R (the start of the journey) and r =  (the end 
of the trip).

Long ago John Michell (1784) and Pierre-Simon 
Laplace (1796) applied Newtonian concepts to inves-
tigate a theoretical celestial body where the escape ve-
locity would be such that light could not escape. Since 
Newtonian gravitation (1687) and Einstein’s general 

theory of relativity (1915) are different frameworks, 
one must be cautious in making analogies between 
classical situations and black holes of general relativ-
ity.1 But one cannot resist setting v = c for the escape 
velocity and arriving at2,3
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This relation turns out to be the condition for a 
black hole in general relativity.4 The parameter 
R is called the Schwarzschild radius after Karl 
Schwarzschild, who discovered the first solution to 
Einstein’s field equations shortly after Einstein pro-
posed the theory of general relativity.5

If mass M is concentrated into a sphere with radius 
R
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., the Schwarzschild radius, a black hole 

forms. Forces become so great that the mass evolves to 
a point of infinite density called the singularity. How-
ever, we expect this central region to be finite when 
we eventually arrive at a theory that combines general 
relativity with quantum mechanics.

A spacecraft can orbit the black hole outside the 
Schwarzschild radius, but should the spacecraft come 
closer than this special radius, the spacecraft cannot 
escape. The spacecraft mass then joins the mass of 
the black hole, and the Schwarzschild radius becomes 
a trifle larger as a result. Students can calculate the 
Schwarzschild radius for the Sun and Earth. If one 
could somehow get all the mass of the Sun into a vol-
ume defined by the Schwarzschild radius, you would 
produce a black hole. This can lead to discussions of 
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supernovae, natural phenomena whereby black holes 
form when the most massive of stars die.

Astronomers believe that supermassive black holes 
lurk in the centers of many galaxies, including our 
own.6,7 These extremely large black holes formed ages 
ago over billions of years as they “ate” matter over long 
periods of time, growing larger and larger. In recent 
years, near-infrared studies of stars close to the center 
of the Milky Way have revealed data from which we 
can calculate the mass of our central galactic black 
hole. We will show below how this is accomplished 
with basic physics, giving introductory students a 
problem from the frontiers of astronomical research.

R. Schödel et al.8 have found that the star S2 (S0-2 
in Ref. 11) orbits the center of our galaxy with a semi-
major axis of about 1000 AU. It comes as close as  
120 AU to the galactic center and has an incredibly 
short orbital period of only 15 years. For a quick 
comparison, the distance from the Sun to Pluto is 40 
AU, and Pluto orbits the Sun once every 250 years. 
Kepler’s third law enables us to measure the mass of 
the black hole9 at the center of our galaxy.

Kepler’s third law10 for an object of negligible mass 
m orbiting a massive body M is 
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where the semi-major axis is a and the period P. Di-
viding our equation by a similar expression for the 
Sun with mass M0, we obtain  
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The simplest units are found by setting a0 = 1 AU and 
P0 = 1 year so that a is then expressed in AU and P in 
years. Note that when M = M0, we obtain the familiar 
Kepler form for the solar system in Earth units.11

Using a = 1000 AU and P = 15 years, we obtain for 
the mass of our black hole      
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i.e., 4 million solar masses!
Table I contains data for three stars from Ghez et 

al.,12 where Schödel’s S2 is included as S0-2. Students 
can find an estimate of the supermassive black hole for 
these cases and even employ a spreadsheet. Four more 

stars, with larger uncertainties, are given in Ref. 12.
Students should calculate the Schwarzschild radius 

for a supermassive black hole consisting of 4 million 
solar masses. How does this compare to 120 AU, the 
closest approach of S0-2? What about the closest ap-
proach made by S0-16? It is also interesting to express 
these distances in light hours. Students can place an 
upper observational bound on the spatial volume 
within which the central mass must reside. A compar-
ison can be made with the concentration of matter in 
our solar system. Matter confined to a relatively small 
volume of space enhances the case for a black hole. By 
considering such questions, students are engaged with 
the same issues arising from observational data that 
concern the professional astronomer.13

The European Southern Observatory (ESO) has 
an excellent website14 with much information about 
S2. One can view a nice image of the orbit of S2 
around the central black hole in the Milky Way as well 
as a video clip describing its motion. There is also a 
fairly recent NOVA program, “Monster of the Milky 
Way,” on the massive black hole in the center of our 
galaxy. The video of this program can be obtained on 
DVD.15
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