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L INTRODUCTION

Spectroscopic methods are important analytic tools in the study of various

microscopic systems such as nuclei, atoms, molecules, and crystal lattices. The

knowledge gained from the study of the various absorption, emission, or reemission

processes in microscopic systems is generally of interest either to the nuclear

physicist or to the solid-state physicist and the chemist, but seldom to both groups

simultaneously. Mossbauer spectroscopy, however, makes very enriching contribu

tions to both fields. This spectroscopy is based on observing recoilless emission and

resonance absorption of gamma rays by nuclei in solids. Resonance absorption of

gamma rays had been predicted since the beginning of this century; however,

experimental observation of this behavior was difficult due to the amount of energy

lost in the recoil of a nucleus emitting and/or absorbing a gamma ray. Below, we

briefly describe this problem.

From a classical point of view, a free atom of mass m, moving in the y direction

with a given velocity v, has a linear momentum of mv. If this free atom is in an excited

nuclear state and undergoes an energy transition to the corresponding ground state by

emitting a gamma ray, the momentum of the system must be conserved. To conserve

momentum, the momentum of the emitted gamma ray must be balanced by a change

in the velocity of the nucleus. This change in the velocity imparts to the nucleus an

energy associated with its recoil after emission. In most optical spectroscopic studies,

this loss of energy due to recoil is insignificant because it is much less than the

experimental spectral line width. However, in the study of the recoilless emission and

resonance absorption of gamma rays, the energy lost due to recoil is much greater

than the line width and thus becomes an important factor.

In pre-Mossbauer time, several experimental methods were utilized to either

broaden the line width or add to the energy of the gamma ray to make up for the loss in
recoil. One such method was the utilization of the Doppler effect by accelerating the

source toward the absorber in an attempt to compensate for the energy lost in recoil.

Temperature broadening and the use of recoil momentum imparted by a preceding

transition were also successfully employed in some cases in restoring energy lost due

to recoil. However, these techniques did not afford the opportunity to observe

hyperfine interactions due to the large broadening of the lines which were necessarily
incurred.

In 1958 Rudolph L. Mossbauer discovered that recoilless emission and resonance

absorption of gamma rays could be observed if solid substances were used (28).

Without the need to compensate for energy loss due to recoil, line widths were greatly
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Fig. 6.1. Mossbauer periodic table,

reduced to the order of 10^’ eV. A high-resolution technique of this type enables one

to observe hyperfine interactions and thus study events affecting the nucleus and its
immediate environment.

This recoilless resonance phenomenon, which is referred to as the Mossbauer

effect or nuclear gamma resonance (NGR), has been reported for over 100 nuclear

gamma ray transitions. The elements in which these transitions are observable are

shown in Fig. 6.1.

II. BASIC PRINCIPLES

NGR is the process whereby a gamma ray emitted during the transition of a

nucleus from an excited to a ground level excites an identical nucleus in the reverse

manner. This process is the basis of the Mossbauer effect. However, the unique

characteristic of the Mossbauer effect is the ability to observe hyperfine interactions.

This can largely be attributed to emission and absorption of the gamma ray by the

nucleus without any loss of energy or line broadening due to recoil.

To fully appreciate the significance of recoilless emission, we will examine

gamma emission from a classical point of view. Consider a nucleus of mass m at rest

in an excited state. If during a transition from this excited state to the ground state, the

nucleus emits a photon of energy Ey, then, the conservation of energy principle states

that the change in energy of the nucleus (Eo) due to the transition must be equal to the

quantum of energy carried away by the photon plus the recoil kinetic energy (E^)

gained by the nucleus due to the emission process. Therefore, conservation of energy

requires that

*

Eg — Eg — Eq — Ey -l- Eg

where Eg is the energy of the excited state and is the energy of the ground state. For

there to be appreciable resonance absorption, the energy of the transition must be

(1)
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approximately equal to the energy of the radiation emitted, i.e., Eq, = Ey. Conserva

tion of momentum requires that the momentum imparted to the nucleus (/?) from the

transition be equal to the momentum of the gamma ray (p^), i.e.,

E
(2)P= m\ = Py= —

where v is the recoil velocity and c is the speed of light. The recoil energy can be
written as

F2

Er=km\^ = (3)
2mc^

The problem that results when the recoil energy is greater than the uncertainty in
the energy of the photon (F) is shown in Fig. 6.2. When E^ = T there is almost no

overlap of the emission and absorption energies, resulting in virtually no resonance.
Even for cases where 2Er = F, there is no appreciable overlap. Only when ^ F

is there significant overlap. For most other spectroscopies, the recoil energy is usually
much smaller than the line width and resonance occurs frequently.
Now consider an atom bound inside a solid. If for low-energy nuclear gamma rays,

the atom containing the nucleus of interest is bound strongly enough to its nearest

neighbors, there is a probability that the entire solid will recoil instead of the
individual atom. In this case, the mass in equation 3 must be replaced by the mass of

the bulk material. The larger mass of the solid results in an extremely small recoil

energy, virtually allowing for complete overlapping of the emission and absorption

ABSORPTIONEMISSION

(/)

r r

-Er 0 ♦Er ENERGY
(a)
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Fig. 6.2. Emission and absorption Lorentzian lines as a function of relative values of the recoil energy (Ej)
and the line width (E). (a)Er= T, (h) 2Er= T, and(c) 3Er= T.
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lines. Resonance can now occur easily with the natural line widths preserved, a very

important phenomenon since it allows for measurement of several types of hyperfine
interactions. These will be discussed in the following sections.

The general line shapes of absorption spectra in Mossbauer spectroscopy are
Lorentzian “for infinitely thin” absorbers, i.e..

(r/2)^
(4)/(£,) = /0 + (r/2)^

where / is the intensity of radiation for a particular gamma energy {Ey) and £o is the

resonance energy giving an intensity of /q. The line width, F, (full width at half

maximum) is generally twice the natural line width {Fnlw) of the source. Using the

uncertainty principle, one finds that

2 h ln2
(5)r= 2FNLW —

till

where tu2 is the half-life of the excited nuclear level.

A comparison of the shape of the Lorentzian with the more common Gaussian is
made in Fig. 6.3. As sample thickness is increased, the intensity of absorption
increases, the line width broadens, and the line shape goes from a Lorentzian to that of
a Gaussian. Before we define a “thin” or “thick” absorber, resonance cross sections
and Mossbauer fractions will be discussed.

The general laws of quantum mechanical scattering give the cross-section for
resonance, assuming a single line, no internal conversion and 100% zero phonon

absorption (no loss of recoil energy to the lattice) as

LORENTZIAN

GAUSSIAN

/

Fig. 6.3. Comparison of Lorentzian and Gaussian line shapes.
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{21, + 1)
(To = 2t7X^ (6)

(21, + 1)

where K is the wavelength of the photon divided by 2tt, I, is the nuclear spin of the
excited level, and I, is the nuclear spin of the ground level. For most Mossbauer
transitions internal conversion (IC) must be considered. Internal conversion is the

deexcitation of an excited nucleus in which energy is carried away by the emission of
an atomic electron. Inclusion of internal conversion modifies equation 6, giving for
the resonance cross-section

(21, + 1)

(27,+ 1) (« + l)

where a, the internal conversion coefficient, is the ratio of the probability of internal
conversion to that of gamma emission.

To appreciate how large this cross section is, a comparison can be made between
the actual geometric cross section of the nucleus and the calculated cross section from
equation 7. For the case of the 14.4 keV transition in ̂ ''Fe, the ratio of the Mossbauer

resonance cross section to the nuclear geometric cross section is approximately
2.5 X 10^

This is the most dramatic of the Mossbauer transitions and is the main reason that
the ̂ ^Fe transition is the one most often used in Mossbauer spectroscopy. This and
other more common Mossbauer transitions are listed in Table 6.1 with useful

TABLE 6.1

Parameters for Selected Mossbauer Transitions

1
o-Q = 27tX.^ (7)

Isotope
abundance

Half life Internal Mossbauer

cross section

(10-20 cm2)

Mossbauer

line widthEy till conversion

coefficientIsotope (%) (keV) I, I (ns) (mm/s)

5’Fe

«‘Ni

^u

I'^Sn

>2>Sb

'25Te

2.14 3/2 1/2

5/2 3/2

3/2 5/2

3/2 1/2

7/2 5/2

3/2 1/2

7/2 5/2

5/2 7/2

5/2 7/2

7/2 5/2

3/2 5/2

5/2 3/2

5/2 5/2

2  0

2  0

9/2 7/2

1/2 3/2

1/2 3/2

5/2 5/2

14.41 97.8 8.21 256 0.194

0.770

0.149

0.647

1.19 67.41

89.36

23.87

37.15

35.46

57.60

27.77

81.00

21.53

103.18

86.54

25.66

80.56

84.25

5.27 0.135 71.2
12.72 20.5 1.54 8.0
8.58 17.8 5.12 140

57.25 3.5 11.1 19.5 2.10
6.99 1.48 13.6 26.6 5.21

1271 100 1.91 3.78 20.6 2.49
I29J a 16.8 5.1 39.0 0.586

0.535■33Cs
>51Eu
>”Eu
>”Gd

100 6.31 1.72 10.3
47.82
52.18
14.73
18.88
33.41

9.7 28.6 23.8 1.31
3.9 1.78 5.46 0.68
6.33 0.43 34 0.499

0.378161 Dy 28.2 2.9 95
i66Er
170Yb
isiTa

1.87 6.93 23.8 1.82»■

3.03 1.61 8.05 19.0 2.02
99.99
62.70

6.24 6800 46 167 0.0064
0.594l«ir 73.04

77.34
59.54

6.3 6.5 3.06
>^7Au

«’Np
100 1.88 4.30 3.86 1.88

b 68.3 1.12 31 0.0673

“ Radioactive, tm = 1.57 x lO^y.
* Radioactive, = 2.14 x lO^y.
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information such as nuclear spin states, gamma energies, nuclear lifetimes, line

widths, internal conversion coefficients, and cross sections.

The intensity of absorption can be related to two other parameters; these are the

sample thickness and the fraction of recoilless emissions. This latter parameter is
called the Mossbauer fraction or recoil-free fraction and will be discussed first.

For an emitting atom bound in a lattice, recoil energy can be given to the lattice in

the form of vibrational energy (phonons). When this occurs, the emitted gamma has

less energy than the transition energy due to the recoil energy gained by the emitting

atom. If no energy is given to vibrational excitations in the lattice, the whole lattice

recoils. Then the recoil energy is exceedingly small since the recoiling mass is very

large, being the mass of the whole crystal. The emitted gamma energy is therefore

essentially equal to the transition energy. This is called recoil-free or zero-phonon

absorption. When both of these processes take place, there is nuclear gamma
resonance.

A simplified description of the above processes can be found in the Einstein model

of a lattice, where there is a single vibrational frequency (ve) for the atoms. If the

recoil energy given by equation 3 is greater than hvs, there will not be zero-phonon

interactions as the atoms will absorb vibrational energy. However, if the recoil energy

is less than hvs, then the Mossbauer Ifaction, i.e., the fraction of recoilless emissions

!

IS

(8)/ = e k»E

where 6e = is the Einstein temperature and k is the Boltzmann constant.
K

This factor can also be written as
-{P>

/=e^

where (P) is the thermal average of the mean square displacement of the emitting or

absorbing atom and 2ttK is the wavelength of the radiation. This factor was used in

earlier X-ray diffraction studies and known as the Debye-Waller factor.

From equation 8, it is evident that the larger the recoil (corresponding to higher

gamma energies), the smaller the Mossbauer fraction. Smaller atomic masses give

smaller Mossbauer fractions while stronger lattice forces support larger recoilless

fractions.

The Einstein model is oversimplified as it considers only one natural frequency for

the oscillators. The Debye model is an improved model where a distribution of

oscillator frequencies is incorporated into the calculation of the Mossbauer fraction.

The distribution in the model is proportional to  v where v goes from zero to a

maximum called the Debye frequency (vd)- The final result for the Mossbauer
fraction is

(9)

f

-2W (10)/=e

where

/ T Y3E, X dx1
W =

kdo 4 6\" e" - 1o/ Jo
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and 6u = Plots of equation 10 are given for ”Fe (14.4 keV), ‘^'Sb (37.15 keV),

and (77.34 keV) in Fig. 6.4.

In addition to the effect of the gamma energy and lattice force discussed above,
note the additional effect of temperature in the Debye model. Increasing the tempera
ture decreases the recoil-free fraction. Serious consideration must be given to the
operating temperature for the experiment. This will be discussed in more detail in the
experimental section.

s.

I.O

0.9 (a)

Z
O 08

u
<  0.7

0.6

0.5

0.4O

0.3

0.2

0.1

100 200

TEMPERATURE

Z
o

ei
<
oc

O
t

BC

*

100 200 300 400 500

(K)TEMPERATURE

Fig. 6.4. Plots of the Mossbauer fraction versus temperature for various Debye temperatures, (a) '^^Au,
{b) ’2'Sb, and (c) ̂'^Fe.
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s
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Fig. 6.4. (Continued).

The effective thickness for an absorber (!„) is another very useful Mossbauer

parameter. This parameter is directly related to the observed intensity of a Mossbauer
absorption peak. The effective thickness is defined as

ta=fa-na-da-IA- (Tq

where/„ is the Mossbauer fraction in the absorber, the number of atoms per cubic
centimeter of the element, da the thickness (cm) of the absorber, M the isotopic

abundance, and co the resonance cross section. The above equation can be expressed

in more convenient terms by replacing and da with the surface density

expressed in mg/cm^ of the element of interest. Therefore,

fa - No ■ lA ■ g-Q

1000 ● A a

where No is Avogadro’s number and A,, is the atomic weight for the absorber.
Now a more general expression can be given for the line shape resulting from the

nuclear resonance for an absorber with uniform finite thickness as

(11)

(12)

r +00

(r/2f
1(E) = /o 11 - /. 1 - (E - Eo)^ + {TI2)\

r

(r/2)^
“ £2 + (r/2)

(13)dEX exp —t

where fs is the Mossbauer fraction for the source (26).
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Fig. 6.5. Mossbauer spectrum of potassium ferrocyanide.

A Mossbauer spectrum of potassium ferrocyanide is shown in Fig. 6.5 in which
the data points are fitted to a Lorentzian. Note that the energy axis is expressed in
terms of velocity (mm/s). The reason for the choice of units has to do with the way in
which the energy is varied to obtain the spectrum. The observable line widths are
about one part in 10'^-10*^ of the actual energy of the photon. Such resolution far

exceeds any of the ordinary forms of spectroscopy and requires a unique method of
varying the energy, one method of which utilizes the first-order Doppler shift (6). The
absorber and source are moved relative to each other with velocity v resulting in a
Doppler energy shift for the gamma ray of

-Eyc  ̂
(14)E =

Conversions fi-om the velocity units (mm/s) to several corresponding energy units are
given in Table 6.II for a number of the more common transitions. Positive velocity
refers to the case when the absorber and source are approaching each other. Methods
for obtaining the velocities are discussed in the Experimental Methods section.

Observing nuclear gamma resonance is interesting, but the major usefulness
comes as a result of the extremely high resolution that can be achieved. One of the

main areas that can be investigated are nuclear hyperfine interactions. These are
interactions between a property of the nucleus (e.g., magnetic dipole moment) and a
feature of the environment of the nucleus (e.g., magnetic field). There are three such
interactions that are extremely important to Mossbauer spectroscopy. These are the
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TABLE 6.II

Energy Factors for MossbauerTIansitions

Transition

I mm/s =

(10“^^ J/molecule)

I mm/s =

(mK)“

1 mm/s =

(10-* eV)

1 mm/s =

(MHz)
energy

(keV)Isotope

”Fe

6lNi

ii^Sn

>2iSb

>2^e

7.703

36.02

47.76

12.76

19.85

0.5579

2.609

3.459

0.9240

1.438

1.373

2.230

1.075

3.135

0.8335

3.994

3.350

0.9931

3.118

3.261

0.2415

2.827

2.994

2.305

4.808

22.48

29.81

7.963

12.39

11.83

11.62

54.37

72.07

19.25

29.96

28.60

46.46

22.40

65.33

17.37

83.22

69.80

20.69

64.97

67.95

5.031

58.91

62.38

48.02

14.4

67.4

89.4

23.9

37.2
18.9535.5

1271 30.78

14.84

43.29

11.51

55.14

46.25

19.2157.6

1291 9.263

27.02

7.182

34.42

28.87

8.558

26.87

28.10

2.081

24.36

25.80

19.86

27.8

>33Cs

‘51Eu

153Eu

'55Gd

81.0

21.5

103.2

86.5
161 13.7125.7Dy
i66Er

170Yb

isiTa

I93lr

I97Au

237Np

43.05

45.03

3.334

39.03

41.34

31.82

80.6

84.2

6.2

73.0

77.3

59.5

“ mK= milli Kelvin,

electric monopole interaction (EO), the magnetic dipole interaction (Ml), and the

electric quadrupole interaction (E2). We discuss these hyperfine interactions in the
next section.

III. THE PRINCIPAL INTERACTIONS

A. ELECTRIC MONOPOLE (EO)-ISOMER SHIFT

An electrostatic interaction occurs between the nuclear charge of the nucleus and

the atomic electrons that penetrate the nucleus. At the nucleus, the electronic charge

density is given by -e|^(0)|3 and is approximately constant over the nuclear
volume. Usually only the i electrons can penetrate the nucleus due to their wavefunc-

tion symmetries. The effect of this interaction is to raise the nuclear energy level
slightly as shown in Fig. 6.6. Approximating the nucleus as a uniform sphere of
radius R, one finds for this shift in energy

♦

?277

8E=^Ze^ 3p(0)

where Z is the nuclear charge. A net change in the energy of the transition (A£) will

occur depending on the shifts for both the excited (8£e) and ground (8£g) levels, i.e.,

(15)

lir

AE = 8£, - 8E, = Y ●«'(0) " (/?? - R]) (16)



6. MOSSBAUER SPECTROSCOPY 451
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Fig. 6.6. Energy level diagrams for identifying the isomer shift.

ABSORBER

This change in the transition energy will occur in both the source (emission) and
Ae absorber (absorption). The difference between these in velocity units is called the
isomer shift (8) and can be measured as a shift in the absorption line as shown in
Fig. 6.5. The expression for the isomer shift in velocity units using equation 16
becomes

8 = [AE -AEabsorber source

iTTZe^c

(Ee - Rj) [|"4^(0)12absorber - |'^f(0) ^source]5Ey

_ 4nZe^cR^ fAR

5Ey [r

where AR = R^~ R^. The electron density terms in this equation are nonrelativistic;
however, a relativistic model calculation (36) indicates that the only modification of
equation 17 necessary is the addition of an overall factor S(Z). Therefore

.  4TrZe^cR^

^--wr
is the relativistic generalization of equation 17.

Equation 18 can be simply written as

)[|^,(0)|2- |ip,(0)|2] (17)

AR
[|'P,(0) 2S(Z) 'P.(O) 2] (18)R

S = aA iF(0) 2 (19)

where a is called the isomer shift calibration constant and A | ip(0) | ^ is the difference
in electron densities at the nuclei in the two substances. Values for AR IR, S(Z), and

given in Table 6.III. It is evident from these equations that the isomer shift is a
function of the electron density at the nucleus. This electron density will be very
much dependent on electronic structure of the Mossbauer atom and the bonding
between this atom and its ligands. For a less than zero (e.g., ̂ Te), if iron compound

a
are
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TABLE6.UI

Parameters for the Isomer Shift (34)

Relativistic
correction (10-3 al)

(ao mm/s)“

AR/R

(10-^)
E,

S(Z)(keV)Isotope

-5.6-0.157
-0.0085
t-0.060
+0.042
-0.21
+0.024
-0.081
+0.21
+0.0156
+0.34
-0.40
-0.025
+0.115
+0.0060

1.29457Fe

6lNi

59Ru

i'9Sn

>2'Sb

i“Te

14.41
-1.25
+ 5.4
+0.79

1.34367.41
89.36
23.87
37.15
35.46
57.60
27.77
81.00
21.53
103.18
86.54
25.66
84.25

1.927
2.306 a

-5.82.381
+0.622.438

2.530
2.530
2.685

-3.3
1271

+ 4.2
1291

+0.84
133Cs

151Eu

'«Eu
>55Gd

16lDy

noYb
isiTa

I93ir

237Np

+ 3.93.511
-223.511
-1.12
+ 1.44
+0.22

3.678
3.993
4.667
5.196
6.213
6.840
13.580

-7.8-3.16.24
+0.95
+ 1.46

+0.035
+0.053
-0.26

73.04
77.34
59.54

-4.1

“ £!o = Bohr radius.

A has a 8 greater than that of iron compound B, then the electron density at nucleus B

is greater than that at A.

Usually isomer shifts are given relative to the source used in the experiment or
relative to a standard reference material. To compare literature data it is necessary to

have all 8’s relative to the same substance. Conversions relative to one material can be

obtained relative to another by using the evaluated data given in Table 6.IV. This table

also gives recommended standard reference materials. All 6 data are usually reported
relative to these materials.

B. MAGNETIC DIPOLE (Ml)-MAGNETIC HYPERFINE SPLITTING

Energy levels in nuclei having spin quantum numbers (/) greater than zero will

have a nonzero magnetic dipole moment (p.). In the presence of a magnetic field (H),

there will be an interaction that results in the splitting of nuclear energy levels

removing degeneracies. The Hamiltonian describing this interaction is simply

H=-p-H

The magnetic moment can be expressed as

P= SnPnI

where g/v is the nuclear Lande factor (sometimes called the nuclear g factor) and Pn is

(20)

(21)

t
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the nuclear magneton (J3^ = 5.051 X Joule/Tesla). Substituting equation 21
into equation 20 gives

H= -giv/3^/● H

The diagonalization of the first-order perturbation matrix results in the following
eigenvalues (E m) for the Hamiltonian;

(22)

i.

(23)/

where m, is the nuclear magnetic quantum number, having the (2/-1-1) values; -I,
-/-l-l, . . . 7-1, -1-7. As an example, the resulting splitting and transitions for
are shown in Fig. 6.7. However, two of the transitions, m, = -1-3/2 to m, = -1/2
and m, = -3/2 to m, = -hl/2, are forbidden since the selection rule is \m, = 0,
±1. Spectra that result are often quite complex. In the spectrum for metallic iron,
shown in Fig. 6.8, the magnetic field is an internal field of 33 Tesla.

As for the isomer shift, the term that is of most interest is the environmental
parameter, in this case the magnetic field. This field can either exist internally or be
applied. There are three principal contributions to the internal magnetic field, each
being generated by unpaired electrons (45). Usually the dominant contribution is the
Fermi contact field (77,) which results from a spin density (either spin up or spin
down) at the nucleus. These are the s-electrons that can be spin-polarized by the
electrons in the outer shells. The other two fields are the orbital field (HJ, which
results from the orbital motion of the valence electrons, and the dipolar field (77d).

I'M
z
o

3O
m

< 4
1 2 5>

6
<t

-15 -10 -5 0 5 10 15
VELOCITY (mm/*)

Fig. 6.7. Mossbauer spectrum of a-Fe.



TABLE 6.IV

Isomer Shift Reference Scales,

Uncertainty in Last Digit(s) Given in Parenthesis

Absorber and source materials

(isomer shift relative to reference material in mm/s)

Reference

material
Transition

(keV)Isotope

Stainless steel

-0.086(3)

CrNa2Fe(CN)5NO ■ 2H2O

-0.2576(14)

Na4pe(CN)6 ■ IOH2O

-0.0553(21)

57pe a-Fe

(T=300 K)

14.4
-0.146(3)

K4Fe(CN)6 ■ 3H2O

-0.042(3)

Rh

+0.1209(22)

PtCuPd
+0.3484(24)+0.2242(10)+0.1798(12)

a-Fe20j

+0.365(3)

Na4Fe(CN)6 ' IOH2O

+0.2024(22)

Stainless steel

+0.171(3)

a-Fe

+0.2576(14)

CrNa2Fe(CN)sNO ● 2H2O

(T=300 K) +0.111(3)

K4Fe(CN)6 ● 3H2O

+0.2152(24)

Rh

+0.3786(24)

PtCuPd
+0.606(3)+0.4819(13)+0.4374(13)

a-Fe203

+ 0.623(3)

Ru02

-0.249(8)

Sn02

0.000

Pd(Sn)

+ 1.505(13)

Mg2Sn

+ 1.908(12)

Ru(Rh)

0.000(4)

Me2Snp2

+ 1.301(16)

V(Sn)

+ 1.577(6)

K4Ru(CN)6 ● 3H2O

-0.224(10)

CaSnOs

0.000

PdjSn

+ 1.571(14)

a-Sn

+ 1.998(15)

Ru»9Ru 89.4

BaSnOs

(T=77 K)

i^Sn 23.9

;8-Sn

+ 2.559(8)



SnTe

+ 3.446(15)

BaSn03

(r=300K)

Sn02 CaSn03

0.000

V(Sn)

+ 1.624(14)

a-Sn

1.995(15)

Me2SnF2

+ 1.291(16)

PdsSn

+ 1.579(7)

0.000

Pd(Sn)

+ 1.507(13)

Mg2Sn

+ 1.905(12)

/3-Sn

+ 2.555(8)
SnTe

+ 3.441(15)
'2iSb 37.2 InSb /3-Sn Ni2iSn2Be

+ 1.648(19)

CaSn03

+ 8.53(3)

BaSn03

+ 8.47(4)-2.70(4)

Sn02

+8.51(2)

/3-Te03

-1.16(3)

Rh(Sb)

+ 0.05(10)

'25Xe 35.5 ZnTe PbTe Cud)

+0.00(6)

Cu(Sb)

+0.08(3)

Te02

+0.78(4)

+0.01(2)

SnTe

+0.23(5)
Te

+0.57(3)
1271 57.6 Cul Nal KI Csl

-0.024(8) -0.01(3) +0.00(3)

ZnTe

+0.12(2)
129j 27.8 Cul Nal KI Csl

-0.076(18) -0.062(14) +0.007(17)
ZnTe SnTe

+0.384(11)

Smp2

-0.90(8)

+0.81(5)
■«Sm 22.5 SmF3 Eu EU2O3

-0.01(6)
Ui

-0.02(11)



TABLE 6.IV (Cont.)

Isomer Shift Reference Scales,

Uncertainty in Last Digit(s) Given in Parenthesis

Absorber and source materials

(isomer shift relative to reference material in mm/s)

Reference

material
Transition

(keV)Isotope

SmAl2

+0,15(12)

SmFj ● 2H2O

-0.003(13)

EU2O3

+ 1.017(8)

Sm203

+0.04(3)

EuFs ■ 2H2O

-0,046(9)

Sm203

+0.85(4)

Sm203

-0.94(14)

EuFs

0.00(2)

EuSEuFj>51Eu 21.5

-11.65(4)

SmF3

+0.05(3)

EU2O3

-1.18(14)

Pd(Eu)

-0.684(9)

EuS
EuFa153Eu 103.2

+ 14.0(10)

Sm(Eu)

-0.53(4)

SmAl3(Eu)

-0.169(13)

Smp3(Eu)

-0.02(4)

Dy203

+0.62(6)

Gd
Gdp3>55Gd 86.5

-0,678(9)

GdAl2

-0.234(13)

Sm2Sn207(Eu)

-0.12(2)

Gd203(Tb)

+0.1(5)

EuF2

-0.51(3)

GdAls

-0.159(12)

GdF3(Tb)

+ 0.12(14)

Gd(Tb)

+ 2.25(5)

YbS04

-0.34(4)

TmB 12

0.00(2)

DyF3leiDy 25.6

(7-=300 K)

Dy

+ 2.82(10)

YbBs

-0.202(16)

TmAlj

+0.060(12)

Yb
YbAl2nOYb 84.3

0.00(2)

YbAl3

+0.09(2)



(*

Tm

+0.12(3)

Mo(W)

-22.56(8)

Pt(W)

+2.71(8)

Pt(Os)

-0.644(6)

V(Os)

+ 1.71(3)

isiTa 6.2 Ta W Ta(W)

-0.074(4)-0.835(3)

i93ir 73.0 Ir Os Nb(Os)

+ 1.0(2)+ 0.539(7)

I’^Au 77.3 Au Pt

+ 1.22(2)

Th(Am)

-8.9(3)

237Np 59.5 NpAl2 NpOj

-6.10(4)

UO2

-5.17(6)

4^

-.j
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Fig. 6.8. Energy level diagram and line spectrum due to the magnetic hyperfine interaction in ^'^Fe.

9| 9i

due to the coupling between the nucleus and outer electrons. Therefore, the total
internal field is

(24)H = Hc + + Hd

C. ELECTRIC QUADRUPOLE (E2)—QUADRUPOLE COUPLING CONSTANT

When the nuclear-spin quantum number is greater than \ there is a nuclear

quadrupole moment (g). This moment can interact with the electric fieM gradient
(EFG) to result in the splitting of nuclear energy levels. The EFGis(-VVV)

rv„ V
EFG = V E = - V V y = Vy, Vyy V

V

, i.e.,

xz

(25)

ZZ-I

where the components are given as

d^V
-V,=

dXidXj

The above symmetric tensor can be diagonalized by the appropriate choice of axes.

The resulting tensor has three non-zero elements, which are the diagonal elements.

Only two of these diagonal elements are independent due to Laplace’s equation,
which states

9

Vxx + = 0

These two independent elements give rise to two experimentally observable parame-
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ters. One of these is the z component of the electric field gradient defined as

Vzz
(26a)

while the other, the asymmetry parameter, is

(26b)V =
ZZ

where '5̂  Vyy V

The Hamiltonian for the interaction between the nuclear quadrupole moment and
the EFG is

. This constraint restricts 77 to lie between 0 and 1.XX

e^Qq

47(27-1)

where 7 is the nuclear spin operator, 7, the operator for the nuclear spin projected in
the z direction, and 7* are shift operators. For cases of axial symmetry, i.e., r; = 0,
the energy eigenvalue equation is

[372-72+7,(71 +71 )/2]H (27)e -

_  e^Qq

47(27-1)
[3m] - 7(7 + 1)]Eq- (28)

For the case where 7 = 3/2 (applicable to >'»Sn and equation 27 becomes

15
£'e(w,) =

3m] - j [1 + t,2/3]>'2 (29)12

This gives two levels:

Eq (±1/2) = - H4e^Qq (1 + 7,2/3)

Eg (±3/2) = +l/4e2g^ (1 + ̂2/3)

The resulting energy-level diagram for this interaction is shown in Fig. 6.9. Instead
of a single absorption line there are two. The observed splitting of the single line into

1/2

1/2
(30)

m| = l3/2
 Eo+V4e2Qq(l.g%)'/2

A=V2e"Qq(U92/3)'/2

  Eo-V4e2Qq(up2/3)'/2

1=3/2 E=E T
= lV2 iI

l = V2 E = 0 m, = i^/2

e^Qq = 0 e^Qq

Fig. 6.9. Energy level diagram identifying the quadmpole splitting (A).
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Fig. 6.10. ^’'Fe Mossbauer spectrum of sodium nitroprusside.

two lines (see Fig. 6.10) is called the quadrupole splitting (A) and from equation 30

A = 1/2^22^ (1 + r}2/3)‘'2

Often 7) = 0 and consequently the quadrupole splitting for a particular transition will

be dependent only on
When the nuclear spins are different from those of the common transitions in iron

and tin, a much more complicated situation arises. For example, '^'Sb has a ground

nuclear spin of 5/2 while the excited level is 7/2. If 7) = 0, there will be eight allowed
transitions resulting in a more complex spectrum. It is unfortunate that for '^‘Sb the

eight absorption peaks overlap each other and none of the lines can be resolved. A
typical '2’Sb Mossbauer spectrum is shown in Fig. 6.11. Because both the relative

positions and intensities are known, it is not too difficult with the use of a digital
computer to determine the quadrupole coupling. More details on this will be provided
in the sections on Experimental Methods, (Section IV) and Quadrupole Coupling

(Section VII).

(31)

IV. EXPERIMENTAL METHODS

A. SPECTROMETERS

A Mossbauer spectrum is a plot of intensity (of gamma rays) versus Doppler

velocity. While gamma rays are detected and counted by using normal nuclear-
counting instrumentation methods, velocity-modulation techniques are relatively
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Fig. 6.11. ‘^'SbMossbauer spectrum of PhSb(Et2dtc)2.

unique to Mossbauer spectroscopy and are central to any Mossbauer spectrometer.
Many of the earlier spectrometers were mechanical devices in which the source or

absorber moved at a constant velocity relative to one another. With these devices, the

spectrum is obtained by counting for a specific period of time at one velocity,
recording the number of gammas counted, and then selecting another velocity, etc.
Such a procedure is obviously very time-consuming and requires much effort.
Programming techniques can be used to reduce some of this effort. However, current

spectrometers use electromechanical devices which sweep arange of velocities with a
frequency of the order of 10 Hz. This allows the complete range of velocities (i.e.,
energies) to be counted almost simultaneously, although a spectrum does not begin to
appear until after many scans.

The primary element of a Mossbauer spectrometer is an electromagnetic trans
ducer, often referred to as the Kankeleit drive. This has one basic design consisting of
a drive coil, which is located in the field of a permanent cylindrical magnet, and a
velocity-monitoring coil, both of which are attached to a center rod. The coils can be

either specifically designed for the spectrometer or obtained from a commercially
produced loudspeaker. A cross-section diagram of  a drive is shown in Fig. 6.12.

The rod is driven by a current running through the drive coil. The current can be
varied to produce several different periodic motions, shown in Fig. 6.13. The
triangle, which is the most common waveform, and the sawtooth, sometimes called

“flyback, ” both give velocities which vary linearly in time. The triangular waveform
gives a true spectrum along with its mirror image. The sawtooth does not give a
mirror spectrum. The sinusoidal waveform is especially suited for large velocities and
fine precision.

A schematic block diagram of a typical Mossbauer spectrometer is shown in
Fig. 6.14. It illustrates how the electromagnetic transducer, discussed above, is
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Fig. 6.12. Mossbauer drive motor (courtesy ofAustin Science Associates).

related to the other major components of the spectrometer. Central to the electronic

part of a Mossbauer spectrometer is a multichannel analyzer (MCA), an on-line
computer system, or a microprocessor which stores the collected data in the form of
the number of gammas counted at each velocity.

B. SOURCES

The usual sources are radioactive isotopes that first decay by electron capture or

alpha, beta, or gamma ray emission. These radioactive isotopes subsequently
undergo Mossbauer transitions. Simplified nuclear energy level diagrams illustrating

typical decays are given in Fig. 6.15 for four typical Mossbauer transitions. It is

VmaxVmax

tt
V  0V  0

VminVmin

VmaxVmax

tt ?
V  0V 0

VminVmin

'll

Fig. 6.13. Periodic motions of a Mossbauer spectrometer (triangle, sawtooth, sinusoidal, and flyback).
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Fig. 6.14. Block diagram of a Mossbauer spectrometer.

desirable for the gamma ray to be emitted with zero recoil during the Mossbauer
transition. From equations 8 and 10, it is apparent that the Mossbauer fraction, which
gives the probability for a recoilless emission, is significant provided that the energy
of the gamma is not too large. In fact, all the observable Mossbauer transitions have
gamma energies below 200 keV. See Table 6.1 for the energies of the more common
transitions.

The lifetimes of any excited nuclear level used in Mossbauer spectroscopy must
have natural line widths (see equation 5) that can be observed by the Doppler velocity-
scan method of varying the energy. Consequently these lifetimes are usually in the
range of 1 -100 ns. If they are shorter, the line width will be too broad and, if longer,
the line width will normally be too narrow to be observed. It is important to select

source materials that give a large Mossbauer fraction (f,) and have single, narrow
lines. Table 6.V contains a list of such materials with/j values at those temperatures
normally used for the spectroscopy.

C. DETECTORS

Since Mossbauer gamma rays are quite low in energy, the detectors employed are
those that normally detect X-rays. Basically there are three different types of
detectors. These are the scintillation detectors, the proportional counters and the
semiconductor devices. Scintillation detectors are usually Nal(Tl) crystals and are

excellent for the higher-energy Mossbauer transitions due to their counting efficiency.
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They are also relatively inexpensive, but have poor resolution. This makes them
inappropriate for many transitions. Proportional counters, also inexpensive, have
resolutions that are much improved over the scintillation detectors, but have poor
efficiency at the higher energies. The semiconductor detectors are usually Ge(Li) or
Si(Li). More recently intrinsic Ge detectors have been employed. The efficiency is
excellent for these devices at all gamma energies of interest and they have resolutions
that are even better than proportional detectors. An example of their improvement in
resolution can be seen in Fig. 6.16 where a comparison is made with results obtained

from a proportional detector. However, their cost ranges from $5,000 to $15,000. In

addition, they must be maintained at liquid nitrogen temperatures.

TABLE 6.V

Properties of Mossbauer Sources (37)

Transition Source

temperatureSource

material

energy

(keV) (mm/s) fsIsotope (K)

”Fe 0.784

0.604

0.678

0.784

0.875

0.660

0.863

0.813

0.708

0.910

0.724

0.890

0.851

0.735

14.41 0.194 Cr 300

SS310 300

SS 300

Rh 300

4.2

Pd 300

77

4.2

300Cu

4.2

Pt 300

77

4.2

CoO 300

«Ni 67.41 0.770 Ni-Cr alloy

Ni-V alloy

Ru(Rh)

Sn02

4.2

4.2 0.162

0.140

0.471

0.585

0.885

0.574

0.623

0.383

0.340

0.750

0.460

0.780

0.280

0.770

99Ru

i»Sn

89.36

23.87

0.149

0.646

4.2

300

77

4.2

CaSn03

BaSn03

Pd(Sn)

PdjSn

300

300

300

300

4.2

V(Sn) 300

77

300Mg2Sn

77

a-Sn

/3-Sn

77

300 0.046

0.446

0.716

77

4.2



TABLE 6.V (Cont.)

Properties of Mossbauer Sources (37)

Source

temperature

Transition

energy

(keV)

Source

material L(mm/s) (K)Isotope

0.212

0.320

0.450

0.160

0.070

0.290

0.320

0.531

<0.029

0.250

0.143

0.400

300121Sb 2.10 Sn0237.15

77

77BaSnOs

P-Sn
Ni2iSn2B6

77

300

77

i25Te /3-Te03 30035.46 5.209

77

300PbTe

77

Cu(I) 77

4.2

Rh(Sb)

Cu(Sb)

4.2-77

<0.029

0.442

0.120

0.232

0.275

300

77

1271 4.257.60

27.77

21.53

2.49 ZnTe

1291 770.586 ZnTe

>51Eu SmFa

SmFj ■ 2H2P

Sm203

Sm203

Pd(Eu)

Sm(Eu)

Sm2Sn207

Gd203

GdFj

Gd(Tb)

H0AI2

TmBi2

TmAlj

3001.31

300

300 0.440

0.050

0.110

153eu

‘«Gd

0.68 20103.2

86.55 4.20.499

4.2

4.2

161 0.2300.378 30026.66Dy

300

300

166Et

170Yb

1.816

2.019

25-3080.56

84.25 4.2 0.340

0.1804.2

4.2Tm

isiTa Mo(W) 3006.24 0.0064

W 300

Ta(W)

Pt(W)

Pt(Os)

300

300

I93ir 4.20.59573.04

Os 4.2

4.2Nb(Os)

V(Os) 4.2

>97Au 1.882 Pt 77 0.069

0.272

77.35

4.2

237Np 0.067 Th(Am) 4.2-77

4.2-77

59.54

VO2

“ Natural line width in units of mm/s.
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TABLE 6.VI

Effective Absorber Thickness Constant (40)

Transition

(keV) (cm2/mg)

leTransition te

(cm^/mg) Isotope(keV)Isotope

155Gd

16lDy
l66Er

i6»Tm

noYb

isiTa

182W

i93ir

195pt

197Au

237Npfl

86.5 0.194

0.225

0.288

0.918

0.0204

57pe

6lNi

"»Sn

i2iSb

i25Te

0.578

0.0836

0.0622

0.609

0.557

0.0895

0.975

14.4

43.867.4
80.689.4
8.423.9
3.037.1

5.566.235.5

1271 0.219

0.0598

0.0637

0.118

0.778

100.157.6

129l<i

>33CS

‘«Sm

'51Eu

153Eu

73.01.8227.8

98.881.0 0.466

0.0397

0.453

0.200

77.322.5
59.521.5

83.4

“ Isotopic abundance assumed to be one.

D. ABSORBERS

Special care needs to be taken in preparing an absorber with particular attention

given to optimizing the thickness. A sample too thin will result in little observable

absorption while one too thick will absorb most of the gammas nonresonantly, thus

washing out the resonant absorption spectrum. In most other spectroscopies adjusting

the thickness by trial and error is usually the most efficient procedure. However, in

Mossbauer spectroscopy it often takes hours (and sometimes even days) to obtain a

spectrum. Therefore it is important, if at all possible, to prepare the sample correctly

on the first attempt. The thickness of the sample needed to give a good spectrum can

be determined by using equation 12. This expression can be simplified by defining an

“effective absorber thickness constant” {te) as

Nq- lA ■ o-Q

1000 ■
(32)te =

Using equation 32 with equation 12 we find

ta
(33)O-a =

fa ● t.

which is an expression for sample thickness in units of mg of the atom of interest per

cm^. Values for the constant te are given in Table 6. VI for the common transitions and

values for fa can be estimated using plots like those in Fig. 6.4. To use these plots one

must assume an approximate Debye temperature for the material. Usually organic

substances are 50-150K, inorganic substances 100-300 K, and metals and alloys

200-300 K. The Debye temperamre is related to the strength of the bonds between

the atom of interest and its neighbors. For selecting the sample thickness, a rough

9
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value of dp will suffice. Using equation 33 and letting ta = 1, an appropriate sample

thickness can be determined. If a spectrum is expected to consist of more than a single

line, then one should use a larger value for f „ up to five, depending on the anticipated

complexity. Some values of sample thicknesses using = 1 are listed in
Table 6.VII.

It is quite important to have a sample that is approximately uniform in thickness.

This is quite difficult to achieve when the sample needs to be as thin as indicated for

some cases in the table. The usual procedure is to mix the material with a filler

substance that is relatively transparent to the gamma ray. These substances should

have atoms of low atomic weights (low Z) and be nonreactive with the sample.

Examples are fine powders of boron nitride, sugar, polymethylmethacrylate and

glass.

The absorber is placed in a container also made of a low Z material. Common

materials include Plexiglass, beryllium, aluminum, and Teflon. If the absorber

material is a metal, then it can be rolled into a thin foil.

It is important to maximize the count rate by minimizing the source detector

distance. However, at some point minimizing can begin to add a serious error in the

velocity scale. This is often referred to as the “cosine effect” because the error in the

Doppler energy (AE) is

-Eycos 6
c  ̂

AE = (34)

where 6 is the angle between the direction of the photon and the normal direction

between the source and the absorber. As a general rule, it is desirable that the ratio
between the detector-window radius and the source-detector distance be less (assum

ing the source radius is equal to the window radius) than 0.1. Sometimes when a

particular source may be quite weak, closer distances are necessary to get any sort of

spectrum in a reasonable amount of time.

E. TEMPERATURE CONSIDERATIONS

An examination of the plots in Fig. 6.4 reveal the importance of temperature in

obtaining observable spectra. For most Mossbauer transitions, it is necessary that the

experiment be done at low temperature, often down to 4.2 K, which can be achieved

using liquid helium. Some spectra can be obtained using liquid nitrogen for cooling

(77 K). Commercial Dewars readily available which are not already suitable can be

easily modified for Mossbauer spectroscopy. The Dewars are constructed either from

stainless steel or glass, the latter being less expensive but more easily broken.

Many different absorber-source-detector geometries and configurations are possi
ble. The most common has the absorber and the source at the same temperature inside

the cryostat, and the detector outside. Mylar windows (usually aluminum coated) are

most commonly used to minimize the nonresonant absorption of the gammas.

Often it is quite important to gather Mossbauer data as a function of temperature.

These can be obtained using feedback heating devices that give temperatures from

4.2 K to well above room temperature. For higher temperatures, specially con-
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structed vacuum chambers are used. They are constructed with materials that are

nonreactive with the sample at temperatures as high as 2000 K. On the other end of
the temperature scale it is possible to carry out Mossbauer experiments well below
4.2 K (to the order of lO”'^) by using ̂ He-^He dilution refrigerators, now commer
cially available. More details of these cooling and heating devices are described in
several good review articles (6,12,22).

F. APPLIED MAGNETIC FIELDS

The common types of electromagnets are usually not adequate for use in
Mossbauer spectroscopy because they produce fields that are too small to resolve any
interesting information. Most of the studies use superconducting  solenoids capable of
giving fields as high as 10 Tesla. These magnetic devices are constructed inside the
Dewar to give large fields parallel (longitudinal) and perpendicular (transverse) to the
source-absorber direction. These magnets are commercially available for Mossbauer
spectroscopy.

G. VELOCITY CALIBRATION

Calibrating the energy function of a Mossbauer spectrometer is a nontrivial

procedure. In most instances one of two types of procedures is used. The simplest and
most common is the use of standard reference materials whose Mossbauer spectra
have peaks that are well defined in velocity units. The other method is an optical one
which uses either a Michelson interferometer or a Moire fringe device.

Several standard calibration references are available. The most common reference

is the ̂ Te Mossbauer spectrum of a-Fe. The splittings for various materials are given
in Fig. 6.17. The a-Fe has several advantages, including multiple peaks that not only
allow for the determination of the velocity calibration scale constant, but also enable
a  check of the linearity of the spectrometer. Sodium nitroprusside
(Na2Fe(CN)5NO ● 2H2O) is another common material but no check can be made on the

linearity because there are only two peaks. This is usually employed when the
velocity scale is small in a particular experiment, i.e., a maximum velocity of less
than 3 mm/s. Although both of these materials are the most widely used, there are
several other substances that are used. These give multiple line spectra for larger
velocity scales than those for which a-Fe is suitable. a-Fe203 can be employed, but
care must be taken because of the possibility of other phases. To achieve lines at larger
velocities one can use a source of ̂’'Co in a-Fe and an a-Fe absorber, which will give
lines over a range of velocities of 20 mm/s. Finally the largest practical splitting
currently used is the '*’'Dy Mossbauer spectrum of Dy metal, which gives peaks over a
range of velocities exceeding 400 mm/s.

Recently two optical devices for calibration have been gaining wide support
(9,13,14). These are now available on most commercial spectrometers and are more
precise than the reference calibration discussed above. Both optical devices can use
either a lamp or a laser, but the latter is preferred.

With a Michelson interferometer, one can measure distance and time very
precisely to determine velocity. There are two basic mirrors: one is fixed and the other
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Fig. 6.17. Standard splittings for Mossbauer velocity calibrations.
■»

is connected to the moving rod of the transducer. The intensity of light detected at the
photodiode depends on the position U) of the moving mirror (see Fig. 6.18), such that

.  2ttx (35)/  ~ sm
X/2
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where X. is the wavelength of the laser. When the mirror moves X/4, the intensity of the
laser beam at the photodiode will change from a maximum to zero. The photodiode is
used to count the number (n,) of the times there is a change from dark to bright to
dark. The calibration of a particular velocity channel is achieved using the following
relation for the average velocity:

_ n,X
2N^t (36)V,- =

/

where At, is the time spent in the channel and N is the number of times the channel has
been opened for counting.

Similar is the Moire fringe method, which is also shown in Fig. 6.18. The average
velocity of the i channel is given by

Hid
(37)V; =

ANLti

where d is the grating distance. The Moire method does not require the sometimes
difficult aligning and focusing necessary when the interferometer is used, but it is an

order of magnitude less precise. The interferometer gives a “direct measurement,

while the Moire method requires a knowledge of the spacing between lines in the
grating. However, an advantage of the Moire devices is their compactness.

MIRROR

.^OPTICAL GRATING (mOVING)

TRANSDUCER

PHOTODIODELAMP
OR
LASER

MIRROR

MOVING
MIRROR PHOTODIODE

CP -Ea. -ce5
BEAM SPLITTER

TRANSDUCER

LASER

Fig. 6.18. Schematic diagram for a Moire fringe device (upper diagram) and a Michelson interferometer

(lower diagram).
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H. CURVE FITTING

Mossbauer spectra are collected and stored in the form of digital data. This allows

spectra to be examined very carefully, usually by attempting to fit the data to a
theoretical model. The most important data frequently are the positions of each of the

spectral lines. In fitting the data to the model, it is normally important to know the

intensity and the line width of each absorption peak. As discussed earlier, the shape of
absorption peaks for zero-thickness absorbers is Lorentzian. Even though samples
are of finite thickness, the Lorentzian shape is  a good approximation and can be

treated with computers quite easily. A more general line shape is the “transmission
integral” but the computer time necessary for the fitting is long and prohibitively

expensive. However, when there are two or more Lorentzians overlapping, serious
consideration must be given to using a transmission integral fit as opposed to a simple
sum of Lorentzians.

Most of the computer programs used contain subroutines that perform least-square
fits for the data. Before this is done, a certain amount of preprocessing of the data is

required. The digital data is in the form of channel numbers (representing velocity)
versus counts (representing intensity). If the spectrometer is not linear in velocity,

velocity values are assigned to each data point using the data obtained by one of the

calibration techniques described earlier. If a transmission integral fit is desired for the

least squares, then the velocity scales must be adjusted to allow for a constant velocity
increment between data points. If the asymmetric velocity waveform is used, then the

spectrum can also be folded since the first half of the data is a mirror image of the

second half. This procedure will remove some of the unwanted features of the data

due to the geometry.

After the preprocessing, the least-squares computation can be performed. Com
parison is made between the experimental data (T,) and the theoretical data (A,) for a

particular model. In particular, a function (x^) is minimized:

(T,- - A,.)2
(38)x-2 0-?

where o", is the standard deviation of T,. Since nuclear decay data is described by
Poisson statistics, i.e., the standard deviation is nothing more than the square root of
counts in the channel of interest, equation 38 becomes

A,)2(T,
(39)

I

Care must be taken in proposing a certain model and getting a good fit for the data,
since it is often possible to have two models give almost identical values for x^-

Some laboratories do not perform a least-squares fit but merely estimate the peak

positions, widths, and intensity from a plot. However, digital computation gives

experimental parameters that are approximately an order of magnitude more accurate
and precise. The data from a storage device can be outputted by one of several devices
such as x-y plotters, strip chart recorders, paper computer tapes, oscilloscopes,
teletypes, and even on-line devices.
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V. ISOMER SHIFT AND ITS APPLICATION

The basic interaction which results in the isomer shift (8) has already been
described in Section III. The isomer shift can be used to measure electron densities at

the nucleus although primarily one measures changes in it when going from one state
to another (e.g., changes in the chemical species, the physical phases, or reference
frames). Of the various Mossbauer parameters, 8 is certainly the most unique since
the information it provides cannot easily be obtained by other means. The first report
of 8 data was made in 1960 by Kistner and Sunyar (23). Since then there has been a
voluminous amount of experimental and theoretical work reported in the literature.
One of the major contributions has been an entire book on the subject (35). This
approximately 1000-page volume covers a comprehensive range of topics discussed
by leading Mossbauer spectroscopists.

For chemists and solid-state physicists the isomer shift can be correlated to a

number of factors. These include the number of ligands, the geometric arrangement
of the ligands about the Mossbauer nucleus, the electronegativity of the ligands, the
bonding characteristics between the Mossbauer atom and the ligands, and the
electronic state of the Mossbauer atom. Most fruitful Mossbauer isomer shift data is
obtained when a series is considered in which all variables are held constant except
one.

Most of the 8 data is interpreted in the context of empirical relations, i.e., the
isomer shift is correlated either with those factors mentioned above or with data from

other experimental methods (e.g., NMR, IR, ESC A, and powder X-ray diffraction).
Theoretical development has been gradual but shows promise as quantum methods
are continuously being refined.

A. ELECTRON DENSITY CALCULATIONS

Since the isomer shift is a measurement of electron density in the vicinity of the
nucleus, quantum determinations in the form of = 0) have offered much insight
into those species studied. For example, various self-consistent  field (SCF) calcula
tions have been used. In these calculations the Mossbauer atom is treated indepen
dently of any ligands, i.e., as a free ion. One of the first treatments was the Hartree-
Fock calculations for iron by Walker, Wertheim, and Jaccarino (43). Their results are

given in Fig. 6.19. This plot can be used to interpret isomer shifts of ionic materials.
Similar calculations have been done for a number of other Mossbauer atoms. As an

example, the results for antimony are shown in Fig. 6.20 (32). In both of these
figures of plots of electron density versus electronic configuration, the isomer-shift
scale has been superimposed.

While the SCF results are instructional in understanding factors that affect the
isomer shift, they neglect covalency. This can be incorporated into the model by using
some type of molecular orbital (MO) method, which usually considers only the
valence atomic orbitals. Specifically, molecular orbitals are assumed to be made up of
a linear combination of atomic orbitals (LCAO), i.e.,

MO = + Cli4>i, (40)
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charge density. Reproduced by permission from Phys. Rev. Letters (43).

where </>m and 4>l are the atomic orbitals of the metals and its ligands. The coefficients
Om and at control the amount of mixing of each atomic orbital which gives the

molecular orbital. An example of an energy diagram which results from these

considerations is given in Fig. 6.21 for transition octahedral metal complexes

containing ligands with bonding (17). The relative spacing of the energy of the
molecular orbitals is related to the ligands and the geometric structure. The filling of
these levels and values for the coefficients and aj are quite important in the

interpretation of isomer shift data since they allow the determination of electron
populations for the Mossbauer atom.

Extended Hiickel MO theory provides a fairly simple procedure for obtaining the

needed electron population to interpret Mossbauer parameters. In this procedure all
atoms in the molecular system are considered. The basis set is usually taken from

Slater-type atomic orbitals in which all the valence orbitals of each atom are
considered. Overlap integrals are calculated, but Coulomb integrals are set equal to

the proper valence state ionization energies (42). The Wolfsberg-Helmholtz approxi
mation is used to obtain numerical results for the Hamiltonian matrix (47). This

model has been successful as a semiempirical approach.
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B. OXIDATION STATES

From Figs. 6.19 and 6.20, it can be seen that isomer shifts can easily be used in
many cases to differentiate between oxidation states. Even for iron where the

difference between Fe(II) and Fe(III) is only a 3d electron, it is usually fairly simple

to differentiate between the two 8’s for many compounds. While 3d electrons have
essentially no direct effect on the electron density at the nucleus because they do not
penetrate it, they do shield the 4^ electron of an iron atom from the nucleus. Fig. 6.22
contains several examples of collected data showing the relation between 8 and the
oxidation state of the Mossbauer atom. In many cases, there is a distinct range of
isomer shifts for a particular oxidation that does not overlap with the range of another.

C. ELECTRONEGATIVITY

Within the range of isomer shifts for a particular oxidation state, the second factor
that affects these values is the electronegativities of the ligands. Generally, as the
electronegativity of the ligand increases, there is a corresponding decrease in electron
density at the nucleus. There are many cases of linear relations between the isomer

shift and electronegativity or a related parameter. For example, many iodine-

containing molecules are made of bonds which are only pure p. One such empirical
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result for this class of compounds is

8 = 0.136/1^-0.54

where hf, is the number of vacant “p” orbitals at the iodine (30). The values for hp are
directly related to electronegativity.

More commonly, the linear empirical relation exists directly between the isomer

shift and the ligand electronegativity. Such an example is shown in Fig. 6.23. The
resulting linear equations for these two series are 8 = 2.6 + 0.019 ● (lonicity in
percent) for RaSbX and 8 = 1.4 + 0.034 ● (lonicity in percent) for R3SbX2 (10).

(41)

D. PARTIAL CHEMICAL SHIFTS

Numerous cases of linear relations between ligand electronegativity and isomer

shift have led to the concept of partial chemical shift (pcs) (18), i.e.,
n

8 = Constant + X (P^s)i (42)
i=i
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Fig. 6.23. Isomer shift vs. Pauling bond ionicity (of the SbX bond) from some organoantimony

compounds. □, 0(R = CsHs); ■ R = CH3. Reproduced from (10).

where n is the coordination number. Using pcs tables, it is possible to predict isomer
shift values for various compounds, or conversely, isomer-shift data can possibly be
used to determine geometric structures. For example, see the recent '^'Sb Mossbauer
data summarized in Table 6.VIII for Me;,SbCl(3_^). X-ray single-crystal data is only
available for SbCh, which indicates that the Cl’s are trigonally coordinated to the
antimony and the Cl-Sb-Cl bond angles are about 95° (25). It is unlikely that X-ray
structural data can be obtained for the other three compounds due to the difficulty of
growing single crystals and their reactivity. Mossbauer spectroscopy is then of special
value because it gives clues to structure. In this particular example, it is apparent that
the structures of all four species are quite similar since there is the constant change in
S’s,i.e., [pcs(CHj) - pcs(Cl')] = 1.9 mm/sand the model ofpartial chemical shifts
requires that the structures in a series be the same.

The values of the pcs, as has been mentioned above, depend on a number of
factors; but if all of these are kept constant and only the ligands are allowed to vary,
then regardless of the particular Mossbauer isotope or the structure being considered.

TABLE 6. VIII

■^*Sb Mossbauer Data for Me.jSbCl(3-^) (39)

e^qQ I exp
(mm/s)
(±1.0)

e^qQ \ theory
(mm/s)

8 17 exp
(±0.1)(mm/s) T) theoryX

0.2 0.00  -5.9 + 13.3
+ 31.0
-30.8
+ 15.8

+ 15
-4.2 + 29 0.4 0.31

2  -2.5
3  -0.1

-28 0.8 0.6
+ 15 0.0 0.0
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a special ordering is observed. That is, if the ligands are ordered according to their pcs
values, the resulting series will be nearly identical to the spectrochemical series.

E. SECOND-ORDER DOPPLER SHIFT

Care must be taken when interpreting isomer-shift data because included with all
isomer shift values is a very small contribution due to the second-order Doppler
(SOD) shift. This contribution needs to be considered and corrected for in those few

cases when it is significant enough to measurably change an isomer-shift value.
SOD shift results from the relativistic emission or absorption energy shift of a

stationary system seen by another system that is moving; in this case the systems are

the source and the absorber. This energy shift in the emitting (or absorbing) gamma is

given by

6sod= £^(1 + v/c + l/2(v/c)2+ ...)

The second term will average out since (v) for a vibrating nulceus is zero; however
(v^) is nonzero. Therefore, the second-order term will contribute to an energy change
in the gamma referred to as the second-order Doppler shift. The Debye model can be
used to evaluate this shift (8sod)- One finds

(43)

■ejT\3(T x^dx
-3kT 3^^ 2 ^2 e (44)8 SOD ~ (e^ - 1)mc 8 T ,\''DJ 0

Values of these shifts have been calculated for ^’Fe, “®Sn, and ‘^’Sb and are in
Table 6.IX.

TABLE 6.IX

Second-Order Doppler Shifts in mm/s

Experiment temperature
Debye

temperature
(K)

Isotope (K) 4.2 40 77 100 150 200 250 300

57Fe 0.0296
0.0306
0.0324
0.0348
0.0377
0.0411
0.0450
0.0491
0.0535
0.0582
0.0630
0.0680
0.0730
0.0782

20 0.0059
0.0110
0.0164
0.0219
0.0274
0.0329
0.0383
0.0438
0.0493
0.0548
0.0602
0.0657
0.0712
0.0767

0.0564
0.0570
0.0579
0.0592
0.0609
0.0629
0,0652
0.0678
0.0707
0.0738
0.0772
0.0808
0.0847
0.0887

0.0731
0.0736
0.0743
0.0753
0.0766
0,0782
0.0800
0.0821
0.0844
0.0870
0.0897
0.0927
0.0959
0.0993

0.1096
0.1099
0.1104
0.1111
0.1119
0.1130
0.1142
0.1157
0.1173
0.1190
0.1210
0.1231
0.1254
0.1278

0.1461
0.1463
0.1467
0.1472
0.1478
0.1486
0.1496
0.1506
0.1519
0.1532
0.1547
0.1563
0.1581
0.1600

0.1826
0.1827
0.1830
0.1834
0.1840
0.1846
0.1854
0.1862
0.1872
0.1883
0.1895
0.1908
0.1923
0.1938

0.2191
0.2192
0.2194
0.2198
0.2202
0.2208
0.2214
0.2221
0.2229
0.2239
0.2249
0.2260
0.2272
0.2285

40
60
80

100
120
140
160
180
200
220
240
260
280



TABLE 6.IX (Cont.)

Second-Order Doppler Shifts in mm/s

Experiment temperature
Debye

temperature

Isotope (K) 4.2

(K)

250 30040 77 100 150 200

300 0.1028

0.1065

0.1104

0.1144

0.1185

0.1228

0.1304

0.1332

0.1361

0.1391

0.1422

0.1455

0.1620

0.1642

0.1664

0.1688

0.1713

0.1739

0.1954

0.1972

0.1990

0.2010

0.2030

0.2052

0.2298

0.2313

0.2329

0.2345

0.2363

0.2381

0.0834

0.0887

0.0940

0.0993

0.1047

0.1101

0.0928

0.0971

0.1016

0.1062

0.1108

0.1156

0.0821

0.0876

0.0931

0.0986

0.1040

0.1095

320

340

360

380

400

"9Sn 20 0.0874

0.0875

0.0877

0.0879

0.0881

0.0884

0.0888

0.0892

0.0897

0.0902

0.0908

0.0914

0.0921

0.0928

0.0936

0.0944

0.0953

0.0963

0.0973

0.0983

0.1049

0.1050

0.1051

0.1053

0.1055

0.1057

0.1060

0.1064

0.1068

0.1072

0.1077

0.1082

0.1088

0.1094

0.1101

0.1108

0.1115

0.1123

0.1132

0.1140

0.0350

0.0352

0.0356

0.0361

0.0367

0.0374

0.0383

0.0393

0.0404

0.0417

0.0430

0.0444

0.0459

0.0476

0.0493

0.0510

0.0529

0.0548

0.0568

0.0588

0.0525

0.0526

0.0529

0.0532

0.0536

0.0541

0.0547

0.0554

0.0562

0.0570

0.0580

0.0590

0.0601

0.0612

0.0625

0.0638

0.0652

0.0666

0.0681

0.0697

0.0700

0.0701

0.0703

0.0705

0.0708

0.0712

0.0716

0.0722

0.0727

0.0734

0.0741

0.0749

0.0757

0.0766

0.0776

0.0786

0.0797

0.0809

0.0821

0.0833

0.0028

0.0053

0.0079

0.0105

0.0131

0.0157

0.0184

0.0210

0.0236

0.0262

0.0288

0.0315

0.0341

0.0367

0.0393

0.0420

0.0446

0.0472

0.0498

0.0525

0.0142

0.0147

0.0155

0.0167

0.0181

0.0197

0.0215

0.0235

0.0256

0.0279

0.0302

0.0326

0.0350

0.0375

0.0399

0.0425

0.0450

0.0476

0.0501

0.0527

0.0270

0.0273

0.0277

0.0284

0.0292

0.0301

0.0312

0.0325

0.0338

0.0354

0.0370

0.0387

0.0405

0.0425

0.0445

0.0465

0.0487

0.0508

0.0531

0.0554

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

>2iSb 20 0.0860

0.0861

0.0862

0.0864

0.0867

0.0870

0.0873

0.0877

0.0882

0.0887

0.0893

0.0899

0.0906

0.0913

0.0921

0.0929

0.0938

0.0947

0.0956

0.0967

0.0345

0.0347

0.0350

0.0355

0.0361

0.0368

0.0377

0.0387

0.0398

0.0410

0.0423

0.0437

0.0452

0.0468

0.0484

0.0502

0.0520

0.0539

0.0558

0.0578

0.0516

0.0518

0.0520

0.0523

0.0527

0.0532

0.0538

0.0545

0.0552

0.0561

0.0570

0.0580

0.0591

0.0602

0.0614

0.0627

0.0641

0.0655

0.0670

0.0686

0.0688

0.0689

0.0691

0.0693

0.0696

0.0700

0.0705

0.0710

0.0715

0.0722

0.0729

0.0736

0.0745

0.0754

0.0763

0.0773

0.0784

0.0795

0.0807

0.0819

0.1032

0.1033

0.1034

0.1035

0.1037

0.1040

0.1043

0.1046

0.1050

0.1055

0.1059

0.1064

0.1070

0.1076

0.1083

0.1090

0.1097

0.1105

0.1113

0.1122

0.0028

0.0052

0.0077

0.0103

0.0129

0.0155

0.0181

0.0206

0.0232

0.0258

0.0284

0.0310

0.0335

0.0361

0.0387

0.0413

0.0438

0.0464

0.0490

0.0516

0.0139

0.0144

0.0153

0.0164

0.0178

0.0194

0.0212

0.0231

0.0252

0.0274

0.0297

0.0320

0.0344

0.0368

0.0393

0.0418

0.0443

0.0468

0.0493

0.0519

0.0266

0.0268

0.0273

0.0279

0.0287

0.0296

0.0307

0.0319

0.0333

0.0348

0.0364

0.0381

0.0399

0.0418

0.0437

0.0458

0.0479

0.0500

0.0522

0.0545

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400
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The isomer shift measured is a sum of the chemical isomer shifts, the primary

contribution, and the second-order Doppler shift (6sod), which in most cases can be

ignored. Therefore, in general one has

^measure ~ ̂soD + § (45)

F. PHASE ANALYSIS

1. Phase Transitions

In most cases, the electronic structure is different enough in two different phases to
allow the use of the isomer shift to determine if and where a phase transition has
occurred. In these cases of first-order transitions, there will be a discontinuity in the

isomer-shift value. The usual parameter varied is temperature.

Some spectrometers have been designed that operate at a single velocity set on an

absorption peak. Then the temperature is varied and the number of gammas detected

for each temperature increment is recorded. When  a phase change occurs, the count
rate will increase due to a decrease in resonance absorption. The resulting plot of
counts versus temperature is called a thermal scan and is considerably less compli

cated than obtaining a complete Mossbauer spectrum at each temperature.

2. High Pressure

Besides temperature, the pressure can also be varied. This has been successfully
accomplished for about 10 Mossbauer transitions. Studies have usually been centered

around phase transitions and/or the effect of pressure on the isomer shift. There is a

definite volume dependence of the isomer shift which can be expressed as

d8
(46)= constant

dlnV T

As for temperature, it is possible to vary the pressure as a fiinction of the number of
counts at a constant velocity.

3. Chemical Identification

Mossbauer spectroscopy can be used for assisting in the identification of particular

chemical substances. For example, it has been used to identify those iron minerals
found in samples brought back from the moon. In these identifications, the isomer
shift is usually used along with possible quadrupole coupling and magnetic hyperfine
data when attempting to identify unknown materials. Other active scientific areas of
interest in which chemical identification is important include corrosion processes,

mechanisms in catalysts, biological activity of iron-containing systems, and even the

history of ancient artifacts, primarily pottery. Using Mossbauer spectroscopy as a

fingerprint is discussed quite thoroughly in several chapters of a book by Bancroft (3).
Numerous detailed examples can be found in Stevens and Shenoy (39a).
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VI. MAGNETISM

A. LINE INTENSITIES

As discussed in an earlier section, there are six Mossbauer transitions observable

for ̂ Te due to the interaction of the nuclear magnetic moment and a magnetic field.
For these transitions Am/ = 0, ± 1. The intensities of these transitions have an

angular dependence which is related to AmA convenient angle (d) is defined as the

angle between the directions of the magnetic field and the gamma-ray emission. A

number of the angular relations are listed in Table 6.X. Usually there is no preferred
direction, and thus the relative intensities of the peaks can be determined by averaging

the angular dependence over all angles. For ̂ Te this gives a 3;2:1:1:2:3 ratio of line
intensities. If a ̂Te magnetic Mossbauer spectra does not give this ratio, then there is

a preferred orientation in the material. For example, in the two extreme cases, 6 = 0°

gives3:0:1;1;0:3and0 = 90°gives3:4:1:1:4:3.ThespectrumshowninFig. 6.Sis,in
fact, closer to this latter ratio, indicating that the aligned fields in the foil are mainly in

a direction approximately 90° relative to the gamma direction. It is useful to know if

there are preferred magnetic field directions in materials and a determination of this is

possible with Mossbauer spectroscopy. When preferred directions do exist these
materials are said to have “texture.”

B. CONTRIBUTIONS TO THE MAGNETIC FIELD INTERACTIONS

Besides magnetic fields due to external sources, there are three primary internal

magnetic field interactions (44) which have been discussed previously in Sec
tion ni.B. One of these, the Fermi contact interaction, results from a direct coupling

between the spin density of s electrons at the nucleus and the nuclear spin. It can be

expressed as

J  ;

where )3 is the Bohr magneton (/3 = 9.274x/10”^‘‘ Joule/Tesla) and 5, is the core

electron spin. The summation represents an imbalance of electron density at the
nucleus. This polarization comes about via the unpaired electrons in the outer
electron shells of the atom. The Fermi contact is usually the largest of the magnetic
field interaction terms.

A second contribution to the internal magnetic field interaction is the orbital term

H,= 2^j-,L t

There are several cases when this term is zero. These include those when an outer

electronic shell is either half full and is high spin or completely full. For example,
high-spin Fe(III) compounds do not have this magnetic field contribution.

While the Fermi contact considers the interaction of the nucleus and the spin

density of the electrons at the nucleus, a third contribution considers the interaction

(47)Hc =

(48)
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between the nuclear spin and the spin of the electrons outside of the nucleus. This is

called the dipole interaction and the resulting field can be expressed

The dipole contribution is usually quite small compared to the others and is zero in
cases of cubic symmetry.

Other possible sources for an effective magnetic field include the conduction
electrons that are polarized by neighboring atoms or other electrons in the atom. Also

possibly contributing are fields produced by neighboring atoms either by overlap
distortion of the core s orbitals or dipole fields of localized moments (41).

as

H (49)D —

C. MAGNETIC HYPERFINE FIELD SPECTRA

The common difficulty encountered when interpreting quantitatively the
Mossbauer data (8, e^qQ, magnetic hyperfine interaction) is not knowing the value of
the nuclear components of the interaction equations. In the case of the magnetic
hyperfine field interactions, however, the nuclear term (the nuclear moment or

nuclear g factor) is often known well enough. Values of these are given in Table 6. XI.
The nuclear g factors in this table are given in units such that the values in mm/s of

observed spectra splittings can be then directly converted to units of Tesla. For
example, (see Figs. 6.7 and 6.8 for a-Fe) using the go and g, splittings in mm/s and
the values 0.1188 mm/(S ● T) and 0.06790 mm/(S ● T), respectively, the value of
33 Tesla is obtained for the effective internal field of metallic iron.

VII. QUADRUPOLE INTERACTION AND ITS APPLICATION

A great deal of our understanding about the nuclear quadrupole interaction has

come from NQR (nuclear quadrupole resonance) spectroscopy, which was already
fairly well established when Mossbauer spectroscopy began to be used for making
quadrupole measurements. While Mossbauer spectroscopy does not have the preci
sion of NQR, it does add to our knowledge of quadrupole interactions because it
enables observations of quadrupole coupling in many materials not possible with
NQR. These are materials that have no quadrupole interaction in their ground states
since their spins are either 0 or 1/2. However, excited nuclear states usually have spins
of 1 or greater. As nuclei undergo Mossbauer transitions, their spectra reveal
information about the quadrupole coupling in their excited states. Primary examples
of such cases are ̂’'Fe and **^Sn. Another contribution of Mossbauer spectroscopy to
the study of quadrupole interactions is the easy determination of the sign of the
quadrupole coupling constant. Examples include '^'Sb and '^®I.

A. ELECTRIC FIELD GRADIENTS

Quadrupole measurements give information about the electric field gradient
(EFG). Although the EFG in general contains nine elements (see equation 25), the
information of interest is condensed into two parameters: the principal diagonal
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TABLE 6.XI

Nuclear Magnetic Moment Data (38)'

4:^
VO

Gyromagnetic ratioMagnetic moment

Ratio of

magnetic
moments

gigoW)
Ground

mm/(S ● T)

Excited

mm/(S ● T)

Excited

(nuclear

magneton)

Ground

(nuclear

magnetons)

Ey
Isotope (keV) le I

-0.067897(17)

0.0268(4)

-0.0201(4)

0.167(5)

0.180(2)

0.1073(11)

0.1191(19)

0.3808(5)

0.1607(10)

0.3244(3)

0.1248(3)

-0.0231(2)

0.0872(9)

0.0369(6)

0.0375(4)

1.764(24)

0.1212(5)

0.1017(7)

0.085(8)

”Fe

«'Ni

99Ru

i‘9Sn

●2lSb
i25Te

3/2 1/2 -1.7142(4)
-0.637(11)

0.456(2)
-0.605(17)

0.735(9)
-0.681(4)

0.905(16)
1.0687(11)
1.335(8)
0.7465(6)
1.336(3)
2.05(2)

-1.2368(14)

0.118821(12)
0.070083(12)

-0.0265(6)
-0.8283(3)

0.3418(2)
-0.4729(4)

0.18436(7)
0.2545(2)

-0.08596(3)
0.6083(4)
0.05604(3)

-0.01881(4)
-0.0706(7)

0.090604(9)
0.74980(10)

-0.626(13)
-1.0461(3)

3.3591(6)
-0.8872(3)

2.8091(4)
2.6174(8)

-2.5786(8)
3.465(2)
1.5294(7)

-0.2584(5)
-0.479(5)

-0.15532(4)
0.478(7)

-0.285(5)
0.633(18)
2.47(3)
0.604(6)
2.54(4)
2.797(3)
3.443(21)
2.587(3)
2.043(5)

-0.529(5)
0.592(6)
0.629(10)
0.669(8)
5.24(7)
0.4683(20)
0.416(3)
1.34(12)

14.4
67.4 5/2
89.4 3/2

3/2
5/2
1/23/223.9

7/2 5/237.2
3/2 1/235.5

1271 57.6 7/2 5/2
27.8 5/2 7/2
81.0 5/2 7/2

1291
‘33Cs
>51Eu
‘53Eu
‘55Gd

5/27/221.5
103.2 3/2 5/2
86.5 5/2 3/2
25.7 5/2 5/2
80.6 2 0
84.3 2 0
6.2 9/2 7/2

73.0 1/2 3/2

161Dy
l66Er
noyb
isiTa
I93ir

'9^Au
«7np

0.00.0
0.00.0

2.23(3)
2.958(6)
2.875(22)
0.535(4)

1.020(4)
0.1366(5)
0.01180(6)
0.159(19)

2.356(7)
0.1583(6)
0.1448(7)
2.5(3)

3/21/277.3
5/2 5/259.5

“ Uncertainties in the last digit(s) are given in the parenthesis.
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TABLE 6.XB

The Elements of the Electric Field Gradient

in Spherical Coordinates for a Point Charge
9

Vxr = V ̂ (3 sin^ecos^- 1)

Pjy = qr~^(3 sin^0sin2(#)- 1)
V'^^ = 9f-3(3 cos 2^-1)

xy = Vyx = 9r“2(3sin2esin<^cos(/>)

^xz = ̂zx = qr~^(3 smecosffcos<f>)

yyz = yzy = sin0cos0sin</))

component of the diagonalized EFG (see equation 26a) and the asymmetry parameter
(see equation 26b).

The elements of the EFG for a single point charge  q are given in Table 6.XII. In
generalized coordinates these elements are

Vij = qi^XiXj - r^Sy).

When there are several point charges, the contributions from each must be added to

obtain the EFG elements of the configuration. The source of the point charges are
either valence electrons or ligands. The contributions to the EFG can often be

obtained from theoretical calculations using molecular orbital-wave functions. For

convenience, the EFG should be diagonalized. By choosing the most apparent
symmetry axis of the system as the z axis, the EFG matrix will usually be diagonal
ized with Vjj, as the maximum valued element.

An immediate application of the terms in Table 6.XII can be made by comparing
the ligand contribution of the cis- and fran^-octahedral complexes of type MA2B4.
The diagonalized matrix elements for the ci5-ligand complex are

yxx=Vyy={k- B)e
= (-2A -h lB)e

where A = Z/^\r\ andB = Zglr^. The asymmetry parameter, 19 = 0. Likewise, for
the frarw-ligand complex, the diagonal elements are

= V,, = -2(A - B)e
= -2(-2A -F 2B)e

and the asymmetry parameter 17 = 0 once again. Note the difference in sign and a
factor of 2 when comparing equation 51 with equation 52. Mossbauer spectroscopy
allows for easy differentiation between these two structures. The success of the
Mossbauer results is demonstrated in Table 6.XIII.

As mentioned above, valence electrons can also contribute to the EFG. S electron

wave functions are spherical and therefore do not contribute to the EFG. Likewise, if

the valence paid shells are half filled with no spin-pairing or completely filled, there
is no contribution to the EFG. In all other cases, valence electrons contribute to the

components of the diagonalized EFG. The q values (see equation 26a) for each of the
p and d electrons are listed in Table 6.XIV.

(51)

(52)
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TABLE 6.XIII

Comparison of Quadmpole Splittings for

cis-trans Isomers of Low-Spin Fe(II) (4,7)

A

(mm/s)Compounds

-1-1.55

-0.78

(+)1.05

(-)0.50

-0.60

(-l-)0.30

frani-FeCl2(ArNC)4‘'

CK-FeCl2(ArNC)4

trans-Fe(SnCL3)2(ArNC)4

c«-Fe(SnCl3)2(ArNC)4

trans-Fe (CN)2(EtNC)4

c«-Fe (CN)2(EtNC)4

“ ArNC = p-methoxyphenylisocyanide.

A general expression for the total q value can be written by summing the
contributions from the ligands (lattice) and the valence electrons, i.e.,

^ ~ (1 ~ y*) ̂laltice (1 ~ ?valence

where and R are Stemheimer antishielding factors. These factors correct for the

polarization of the core electrons by the ligands (7^) and the valence electrons {R).

They can be calculated from self-consistent field methods.
The valence term can be further subdivided into the contributions from the crystal

field and from the electrons in the molecular orbitals that are created by the metal and

its ligands. The crystal field term will be important when considering nontransition
metal complexes. Using the values in Table 6.XIV, an expression for the p (qp) and

d (qd) contributions can be written based on the populations of the atomic orbitals,
i.e..

-4/5 (!-/?„) [iV.-l/2(V4 + iVv)]
(53)

^P =
{r-p^ )

TABLE 6.XIV

Magnitude of the Diagonal Electric Field

Gradient Tensor Elements for p and d Electrons

VV'xx V
yy zz

Wavefunction (e(r ^)) (e(r ^)) (e(r ^))

-4/5 +2l5 +2/5

+2/5 -4/5 +2/5

+ 2/5 +2/5 -4/5

-2/7 -2/7 +4/7

-2/7 +4/7 -2/7

+ 4/7 -2/7 -2/7

-2/7 -2/7 +4/7

+ 2/7 +2/7 -4/7

Px

Py

Pz

d
xy

dxz

dyz

dx2-y2

dz2
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-4/7(1-/?,) [N,2 + 1/2 (N,, + N,,) - {N,2 - v2 +
(54)qd =

(r-d^)

The lattice term can be evaluated if it is assumed that contributions come from only

the nearest neighbor. When the particular geometry is known, the components of the

EFG can be found from Table 6.XV. The remaining quantities to be determined are

the charges (Z^, Zg,...) and the radii (1/rJ, llrl,.. It is possible to use MO
calculations for the Z values and structural data for the l/r^ values. Another method

for evaluating this data which is qualitative, will be described in the Section
“Additive Models.”

Recall from equation 26b that the values of the diagonalized elements of the EFG

all contribute to the asymmetry parameter, 17. If  = Vyy (true for the many

complexes that have cylindrical symmetry), then 17 = 0. The other extreme occurs

when either V„ or Vyy is equal to zero; then 17 = 1. It is unfortunate that for ”Pe and

‘®Sn Mossbauer spectroscopy the value for 77 cannot be determined from data for the

pure quadrupole interaction. This is due to the fact that the measured quadrupole

splitting (A) is a function of both q and 17 (see equation 31), therefore not allowing for

the independent determination of these two parameters. However, these quantities

can be determined from Mossbauer spectra of higher-spin nuclei. For ̂ Te and "®Sn, it

is possible to determine 77 by removing the remaining degeneracy in nuclear levels

through the application of a magnetic field.

B. SPECTRA

As discussed in Section in.C, when a nucleus has  a nuclear quadrupole moment

and an electric field gradient is present, the nuclear level splits into {21 - 1) levels.

The energies of the two resulting levels for I = 3/2 are given in equation 30. It is not

possible to express the energies of the split levels for most cases of I in closed form. A

series approximation has been worked out for the various I states (33). These can be

obtained by using the series expression for the split energy levels:

4

e^qQ^a„{I,m,)r)’'E,{l,m,) = (55)
n=0

The values for a„ are given in Table 6.XVI. The Mossbauer spectra will indicate

quadrupole splittings, if they are present, in both the excited and the ground nuclear

levels. The shift for each possible Mossbauer line (A£g) can then be expressed as

A£ Q — Eq — Eq (56)

where the * represents the excited nuclear level. When / ̂  1 for both excited and

ground nuclear levels, one may substitute equation 56 into equation 55 giving the

energy shift as

^E{I,m^ = e^qQ IRqE*qH*, m,*) - £e(/,/n,)] (57)



TABLE 6.XV.

Point Charge Model Expressions for the Components of the EFG Tensor at a Nucleus M Due to Ligands A,B,C,D for Common Structures (5)

vO
00

Compound of the EFGa.b StrucmreComponents of the EFGStructure

Vjj={2L4]-2/3([B] + 2[C])}e

V^={-[A]-[B] + 2[C]}c
Vxr = {-[A] + 5/3 [B] - 2/3[C]}e

= {V2/3(-2[B] + 2lC])}e

V^=Vy,= V^=V,y = 0
T) 7^ 0

z
z

V^=V^=Vyy = 0
A  ‘‘

B

M
M. ● X /I \/I \

B B B
B c C

A= l/2c2G(4/3p2+8/3(22)1/2
P= [A]+ [B]-2[C]

e = [A] - [B]

Sign = sign of P

V^ = {2[A]-2[B]}e

Vyy={-iB]+\A]}e
V„= {+[B]+ \A]}e

ri = 0

z

A

M X

/I \
B B B

= {2[A] - 2/3([B] + [C] + [D])}e

= {-[A] - [B] + [C] + [D]}e

V'xr = {-[A] + 5/3[B] - 1/3([C] + [D])}e

Fyj = = {V2/V3([C] - [D])}e

Vxz =Vzx = {V2/3(-2[B] + [C] + [D])}c

Vxy = Vyx = {2/V3([C] - [B])}e
7]^0

Vjj = {-2[A]'»= - [Bl'l^ + 4[BF“}e

Vyy = {5/2[aF= - [B]“« - 2[BF»}c
= {- 1/2[AF' + 2[B]«* - 2[B]*‘'}e

T) = 0

Z

V^={2\A]-2iB'\}e

Vyy = {2[B]-2[A]}e
V^ = 0

V = 1

A

A  ̂
M

/I \ M
A B B /1\

D B C

z
{ACBP'"- 3[B]‘'«}c

Vyy = {3/2[B]'»'= - 2[B]'»‘>}e
= {3/2[B]"*= - 2[B ]'»“}«

r) = 0

z

A BB fB
\l M—B ■ X
M—B X /I

A B
B B



{2U]rt*- 2[B]>b“- l/2[B]>l«}e

{-U]«>'=- 2[B]'»‘« + 5/2[B]«*}e

V'xt = {-L4]''*+ 4[B]“>“- 2[B]“*}e

T7 #0

X
Vjz = {4U]'ta - 3[BMe

Vjy = {-2U]'‘>^ + 3/2[B ]'<*}«
{-[A]"’^+ 3/2[B]»*}6>

r) = 0

z

BB B A
\l \l
M—A ● ● ■ z M—B ● ● ● X

/I /I
B B B A

= {2[AF“ - 3[B]«^ + 2[fl]«>^}e

= {-[A]“’"+ 3/2[B]'^ -

Vxt = {-[A]*" + 3/2[B]>'« - [B]*‘«}e

V = 0

z
= {2[B]*‘> - 2[B]«x= + 2U]*‘> -

{-[bF"+ 5/2[B]«*- UP^- L4]««}e

V'xr = {-[B]*® - 1/2[B]<>* - [A]«>‘> + 2L4]«x=}e

V^O

z

B B B B
\l \l
M—B ● ■ ■ X M—A ■ ● ● X
/
B A B A

z
^zz ~ ̂xx ~ ̂  yy ~ ̂ = {4A] - 4[B]}e

Vyy = {2[B] - 2[A]}e
= {2[B] - 2[A]}e

V = 0

.y z ●y
B B B’
\| /

B A B''
\| /

M
/I \

B A B:

M
/|\

B B.B
● X ●IX

= {2[A] - 2[B]}e
= {[B] - [A]}e

{[B] - [A]}^

z
= {2[B] - 2[A]}e

Vyy = {[A] - [B]}e
= {[A] - [B]}e

7) = 0

.y z
● y

B A B’
\|/

M
/I \

B B A--
\| /

1J = 0 M
/I \

B B A,B BiB
-X ●X

= {2[A] + 2[C] - 4B]}e
Vyy = {2[B] - [A] - [C]}e

= {2[B] - [A] - [C]}e
V = 0

z
Vjj = {2[A]-2[C]}e
Vyy = {[C] - [A]}
V'x. = {[C] - [A]}e
V = 0

e

z●y ● y
B A B- C A B'\1/ \i /

M M
4. /I \
S B c B„

/I \
C B B..

●X ●X



TABLE 6.XV. (Com.)

Point Charge Model Expressions for the Components of the EEC Tensor at a Nucleus M Due to Ligands A,B,C,D for Common Structures (5).
8

a,b Compound of the EFGStructureComponents of the EFGStructure

Vjj = {2[A] -2[C]}c

V„ = {4[C]-3[B]-[A]}e

Yyy = {3[B] - 2[C] - [A]}e
T)#0

= {2[A] - [B] - [C]}e

E^ = {-[B] + 2[C]-[A]}e

Vyy = {2[B] - [c] - [A]}e
T) # 0

zz ■y■ y

C A B'
\l /

C A B'
\|/

M
/I \

M
/I \

B B C,.B,B B
●X■X

= {4[A] - 2[B] - 2[C]}e

Vyy = {[c] + [B] - 2[A]}e
E;„= {[C] + [B] - 2[A]}e
r, = 0

z
V'zz = Vyy = E;,;, = 0z ■ y●y

B A c
\1 /

M
/I \

B A C.

A A B'
\1/

M
/|\a.A B

●X■X

E^ = {4[A] - 2[B] - 2[C]}e
E;„= {4[Bl - 2[C] - 2[A]}e
Vyy = {4[C] - 2[B] - 2[A]}c
T)5^0

V^={i\A]-Z[B]}e
Vyy={i[B]-Z[A}}e
v„ = o
t) = 1

zz ● y● y
B A c'
\l /

M
/I \

c A B.

B A B-
\|/

M
/|\

B A A.
●X●X



= {2lA] + [C] - 3[B]}e

Vxt = {3[S] - 2[C] - [A]}

V,,, = {[C] - [A]}e
T)^0

e

z
= {[A] + [B] - 2lC]}e

Vyy = {[B] + [C] - 2[A]}e
V„= {[A] + [C] - 2[B]}e

T)#0

z●y ●y
B A c C A B

\| /\| /
M M

/I \
B c C B A.

●X ■X

= {4[B] - 2[A] - 2[C]}e
Vyy = {[A] + [C] - 2[B]}e

= {[A] + [C] - 2[B]}e
7) = 0

= {4[C] - 2[A] - 2[B]}e
Vyy = {[A] + [B] - 2[C]}e
V„ = {[A] + [B]-2[C]}e
T) = 0

z z
●y ■y

C B A ■
\| /

M
/|\

C B A,

B C a'
\| /

M
/I \

B c A
●X ■X

“ The choice of EFG axes is usually indicated on the diagram of the structure or in a footnote. In all cases, except the four-coordinate MABC2 and MABCD
structures, this choice of axes serves to diagonalize the EFG tensor. The ordering of the axes to preserve the convention | V^ \ &| Vyy\ s| will depend
on the [L] values. Thus, the final choice of axes may not be the same as given here; i.e., may become or V

Whenever 7) is not 0 or 1, it is easily calculated (after diagonalizing the tensor), taking | V^\ «| Vyy\ «| ,andusing7) = (V„ - Vyy)IV^^.For
example, take the third last structure in the table, MA2B2C2: tj = 3[C] - 3[B]/[B] -I- [C] - 2[A].

The X axes coincide with the C2 symmetry axis, and the y and z axes lie in the symmetry planes.
‘‘ The y axis is perpendicular to the symmetry plane, while the x and z axes lie in the plane. The orientation of the x and z axes depends on the relative magni

tudes of [A ], [B], and [C ], and the tensor must be diagonalized separately for each case considered. The P and Q expressions lead to the magnitude of the quadru-
pole splitting and is obtained from the symmetrized parameters of Clark (2).

' The EFG tensor must be diagonalized for each example considered.
f The superscripts tbe and tba refer to trigonal-bipyramidal equatorial and trigonal-bipyramidal axial bonds, respectively.

etc.yy.

Uio
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TABLE 6. XVI

Eigenvalue Coefficients (A „) for the Nuclear Quadrupole Interaction (33)

I <23 <24<2l <22m, <20

-0.0017

0.0017
±3/2 -0.0001

-.0001

0.0425

-0.0425

-0.0020

0.0020
3/2 0.2500

-0.2500±1/2

00 00.2500

-0.1250

-0.2500

-0.1250

0.2500

02 2
00.1250

0.0001

-0.1250

-0.0001

0 01
0.0020 0.0017-0.04250

0 0 0-1
-0.0020 -0.00170.0425-2

-0.0003

0.0006

-0.0006

0.0125

0.0880

-0.1005

0.0020

-0.0431

0.0410

5/2 ±5/2 0.2500

-0.0500

-0.2000

0.0003

-0.0001

0.0001
±3/2

±1/2

0.0048

0.0124

-0.1327

0.1239

-0.0026

-0.0058

0.0417

-0.0385

7/2 ±7/2 0.0001

0.0008

-0.0009

0.0003

0.0063

0.0242

0.1318

0.1659

0.2500

0.0357

-0.1071

-0.1785

±5/2

±3/2

±1/2

-0.0020

-0.0014

0.0253

-0.2085

0.1898

0.0009

0.0017

-0.0204

0.0842

-0.0679

9/2 ±9/2 -0.0004

0.0001

0.0009

0.0052

-0.0048

0.0077

0.0201

0.0359

0.1404

-0.2066

0.2500

0.0833

-0.0417

-0.1250

-0.1667

±7/2

±5/2

±3/2

±1/2

i? 2 is the ratio of the excited nuclear quadrupole moment to that of the ground nuclear
quadmpole moment. Values of Rq are listed in Table 6.XVII. If / = 0 or 1/2 for one
of the nuclear levels, then simply

Eq = Eq {I,m,) or
Eq = El (/*, m,*)

Table 6.XVII also gives values for the nuclear quadrupole moments and for the

quadrupole coupling constant e^qQ, which are needed for evaluating and interpreting

quadrupole Mossbauer spectra.
The only remaining items that need to be evaluated are the transition intensities for

each Mossbauer line. Again, in most cases, these are not known in closed form, but
have been evaluated as a series (33). The intensities can be expressed as

4

A(/*, /, = X rn,*,m,)T)

(58)

(59)n

n=0

where the values of b„ are given in Table 6.XVIIL

In Fig. 6.24 ’^'Sb is considered in which plots are shown of the energy splittings,
the relative intensity of each transition, and the effect of r) on the relative energy

positions of each peak. An example spectrum in which 17 = 0 is shown in Fig. 6.11.
For many substances 17 = 0, simplifying a number of factors. For ”Fe and "^Sn,

the spectra reduce to doublets (see Fig. 6.10). If the absorber is powdered and there is



TABLE 6,XVn

Nuclear Quadrupole Moment Data (38)

eQ

Quadrupole Moments 4/(2/-1)

. n,2)]
Ratio of

quadrupole
excited" moments" Ground"

QQo

Isotope Ey Ig I ground" Excited"g

s’Fe

6lNi

9»Ru

■i^Sn
'2iSb
i25Te

14.4 3/2
67,4 5/2

1/2 0.0 0.21(1)*
-1.21(13)*

0.35(9)
-0.06
-0.38(8)
-0.20(2)
-0.71(9)
-0.68(6)

0.0 0.364(17)
-0.134(15)

0.10(3)
-0.063(11)

1.340(10) -0.057(17) -0.37(8)

0.060(6)
0.010(3)
0.0

-0.141(14)
-0.103(13) -0.044(6)

0.0

-0.184(16)

3/2 0.162(15)*
0.12(3)

-1.21(13)
2.93(5)3/2 5/289.4

3/2 1/223.9 0.0
7/2 5/237.2 0.28(6)
3/2 1/235.5 0.0

1271 7/2 5/257,6 -0.79(10)
-0.55(7)
-0.0030(7)

1.14(5)
2.90(12)
1.59(16)
2.35(16)*

-0.896(2)
1.2380(16) -0.071(9)

-0.00013(3)
0.397(17)
0,211(9)
0.46(5)
0.69(5)

1.312(9)
0.520(3)
0.20(5)
0.9996(4)

1291 5/227.8 7/2
i33Cs
isiEu
>”Eu
>55Gd
16lDy
i66Er
I70Yb
isiTa
i«ir
'S’Au

237Np

5/2 7/281.0
7/2 5/221.5 1.50(7)

1.51(6)
0.32(8)
2.34(16)*

-1.59(15)
-2.11(11)

4.4(5)

0.249(12)
0.366(15)
0.028(7)
0.68(5)

-0.247(23)
-0.313(16)

1.47(17)

3/2 5/2103.2
5/286.5 3/2
5/2 5/225.7

80.6 2 0 0.0 0.0
84.3 2 0 0.0 0.0
6.2 9/2 7/2 3.9(4)

0.70(18)
0.594(10)
4.1(7)

1.133(10) 2.23(23)
0.24(6)
0.192(3)
0.52(9)

1/2 3/273.0 0.0 0.0
1/277.3 3/2 0,0 0.0

59.5 5/2 5/2 4.1(7) 0.990(10) 0.52(9)

" Uncertainties in the last digit(s) are given in the parenthesis.
* Stemheimer corrected

TABLE 6.XVHI

Intensity Coefficients (b„) for the Nuclear Quadrupole Interaction (33)

/* / bo bimi bi bim, b.

7/2 9/2 ±7/2 ±9/2 0.2000
0.0444
0.0056

0 -0.0021
0.0014

-0.0003
0.0007
0.0002
0.0019

-0.0027
-0.0245

0.0321
-0.0058

0.0004
-0.0025
-0.0190

0,0003 -0.0005
-0.0009
-0.0001

0.0011
-0.0003
-0.0007
-0.0168

0.0007
0.0007
0.0011
0.0002
0.0006
0.0093

±7/2 ±7/2 -0.0001
0.0001

-0.0001
0.0001

±7/2 ±5/2
±7/2 ±3/2 0
±7/2 ±1/2 0
±5/2 ±9/2

±7/2
0 0

±5/2 0.1555
0.0778
0.0167

-0.0007
0.0028

-0.0073
0.0051

±5/2 ±5/2 0.0725 -0.0346
-0.0546
-0.0020

0.0224
0.0031

±5/2 ±3/2
±5/2 ±1/2 0
±3/2 ±9/2 0 0 0 0
±3/2 ±7/2 0 0.0007

-0.0135
0.0229
0.0275 -0.0178

■0,0118
±3/2 ±5/2 0.1167

503



TABLEe.xvm (Com.)

Intensity Coefficients (i„) for the Nuclear Quadrupole Interaction (33)

*
I* I b3 bibi*1bom, m,

0.13590.1008

-0.0790

-0.2557

0.2043 -0.1058

0.0001

-0.0055

-0.1003

0.3076 -0.1564

-0.2021

0

0.0020

0.0519

0.1026

0.0640

-0.0513
±3/2 0.1000

0.033
±3/2

±3/2 ±1/2
00±9/2 0±1/2
0.0041

0.0441

-0.1327

0.0847

0±7/2 0±1/2

±1/2

±1/2

0.0105

-0.0566

0.0461

±5/2 0

±3/2 0.0833

0.1667±1/2 ±1/2

0.0100 -0.0061

-0.0033

0.0029 -0.0041

-0.0045

-0.0001

0.0839 -0.0338

0.1393

0.0064

0.0017

0.0009

-0.3327

0.0007

0.0001

-0.0027

0.0013

-0.0004

0.0014

0.0043

-0.0033

-0.0012

-0.0017

-0.0011

0.0099

-0.0097

0.0011

0.0037

0.0021

0.0040

-0.0677

0.2327

-0.1743

0.0056

0.0672

-0.2379

0.1344

±7/2 0.2500

0.0715

0.0120

5/2 7/2 ±5/2

±5/2±5/2

±3/2±5/2

±1/2 0±5/2

±3/2 ±7/2 0

±3/2 ±5/2 0.1784

0.1189

0.0356 0.2543 -0.1081

-0.0058

-0.0819

0.0020

0.0286

±3/2±3/2

±1/2±3/2

0.3294 -0.1340

-0.1907 0.0775

±1/2 ±7/2 0

±1/2 ±5/2 0

±1/2 ±3/2 0.1191

0.2140±1/2 ±1/2

-0.0022

0.0454 -0.0154

-0.0435

0.0454 -0.0154

-0.3138

0.2679 -0.0952

-0.0435

0.2679 -0.0952

-0.2242

0.0007

0.0149

0.1109

0.0149

0.0803

-0.0110

-0.0251

0.0361

-0.0251

0.2519

-0.2265

0.0361

-0.2265

0.1903

±5/2 05/2 5/2 ±5/2 0.2381

0.0952±3/2 0.0009

-0.0008

0.0009

-0.0035

0.0025

-0.0008

0.0025

-0.0017

±5/2

±1/2 0±5/2

±5/2 0.0952

0.0857

0.1524

±3/2

±3/2 ±3/2

±3/2 ±1/2

±5/2±1/2 0

±1/2 ±3/2 0.1524

0.1810±1/2 ±1/2

0.0049

-0.0436

0.0380 -0.0092

-0.0049 -0.0013

0.0430 -0.0078

-0.0380

0.0013

0.0081

0.0092

-0.0205

0.0707

-0.0498

0.0205

-0.0704

0.0498

±5/2 0.0003

-0.0019

0.0015

-0.0003

0.0018

-0.0015

3/2 5/2 ±3/2 0.3333

0.1333

0.0333
±3/2±3/2

±1/2±3/2

±1/2 ±5/2 0

±1/2 ±3/2 0.2000

0.3000±1/2±1/2

0 003/2 1/2 ±3/2 ±1/2 0.5000

0.5000

0
00±1/2 0 0±1/2

000 00.20002  0 All five

transitions

00 00.3333 05/2 1/2 All three

transitions
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Fig. 6.24. Quadrupole splittings for ’^^Sb.

no preferred direction for the small crystals, the intensities of the two peaks will be the

same. An additional requirement, however, is that there be no lattice anisotropy. If

there are preferred directions, the intensities will be unequal. This is illustrated in

Fig. 6.25 where the intensities are plotted as a function of the angle between the

direction of the gamma and the crystallographic z direction.
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Fig. 6.25. Relative intensities of the two quadrupolar split absorption peaks as a function of the angle

between the direction of the gamma and the crystallographic direction.

C. ADDITIVE MODEL

The quadrupole coupling data can be used quite successfully with the additive
model. This model has similarities to the partial chemical shifts discussed in Section

V.D. Using the equations in Table 6.XV and the experimental data, A’s, B’s... can be
determined. These values are called partial quadrupole splittings (pqs). To determine

the rest of the pqs values, one must assign a value of the pqs for one ligand. These
values can then be used to assist in the interpretation of Mosshauer data on substances

about which little is known. The model works quite well in most instances because,

although the equations in Table 6.XV consider only the ligand contribution to q, they

are also applicable to the populations of the molecular orbitals when the orbitals are in
the direction of the ligands, as they usually are.

Examples of the usefulness of the additive model are apparent in Table 6.VIII.
Using pqs values for chloride as zero, for methyl as 13.0 mm/s, and for the lone pair
as 7.5 mm/s, one gets the calculated values for the quadrupole splitting shown there.
The relative values of the pqs for these ligands indicate, as expected, that the methyls

are electron-donating while the chlorides are electron-withdrawing.
Many other examples have been reported by Bancroft and are summarized in a

book (3). This model has also been extensively discussed by M.G. Clark (11).

VIII. SPIN HAMILTONIAN AND RELAXATION

The principal interactions discussed in Section III can be collected and the
interaction Hamiltonian written as
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^Im H(E0) + M(mi) + ̂(E2)

The magnetic interaction H(md consists of the nuclear Zeeman interaction (Z), the
orbital term (L), and the magnetic or spin hyperfine interaction (M):

H(mi) = Hz + Hi + H

(60)

(61)M

The nuclear Zeeman interaction occurs when there is an externally applied magnetic
field, while the magnetic hyperfine interaction is due to internal magnetic fields
produced by the electronic spins. These internal fields produce the Fermi contact and
dipole interactions which have been discussed in Section VI along with the orbital
term in equation 61.

The magnetic hyperfine interaction is analogous to the electric quadrupole

interaction, which is an electric hyperfine interaction. A magnetic hyperfine tensor
A , similar to the electric field gradient tensor of equation 25, can be defined and a
spin Hamiltonian written as

Hm = 7 ■ ?

where 7 is th^nstrinsic nuclear spin and ?is the effective electronic spin. For many
applications X can be taken to be diagonal, i.e.,

^  /A, 0 0 \

(62)

A = 0 Ay 0
\0 0 aJ

Substituting the above tensor in equation 62 gives

Hm = A^l^S^ + AylySy A A ̂ ^

■ S

(63)

Following Wickman, Klein, and Shirley (45) the effects of equation 63 on the
Mossbauer spectrum for iron are investigated below. The effective electronic-spin
case considered is 5 = 1/2.

For the Mossbauer transition in ̂ ’Pe, 7, = 3/2 and 7g = 1/2 for the excited and
ground states, respectively. The excited state has (27,. + 1)(25' + 1) = 8 degenerate
levels while the ground state has (27j + 1) (25 + 1) = 4 degenerate levels. Each of
the 27 + 1 nuclear spin states can occur with an effective electronic spin 5 j = ±1/2.
With a magnetic field in the z direction only, equation 63 reduces to

H^ = AJ,S,

Since the degenerate states are not mixed by the Hamiltonian of equation 64, the
energies are simply

(64)

{mM I H

where m and M are the z quantum numbers of the nuclear and electron spins,
respectively. Equation 65 implies four energy levels for the excited state and two for
the ground state. However, each of these levels have two-fold degeneracy (see
Fig. 6.26). The dipole selection rule allows for six pairs of transitions, one (see

m) (65)mM
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l-,-3/2>
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|±Sz = l±'/2> = l*>

Fig. 6.26. Twofold degeneracy of energy levels in ̂ ’Fe where the z component of the effective electron

spin can have values Sz = ±i Reproduced by permission from Phys. Rev. (45).

Fig. 6.7) for each of the two electronic spin states. Since the Lorentzian pairs

overlap, the resulting Mossbauer spectrum consists of six line shapes.

Maintaining axial symmetry, but allowing small transverse magnetic fields such

that A z = <S1 Az, the Mossbauer spectrum becomes more complicated. Note that

the components of the hyperfine tensor are different for the excited and the ground

states. The spin Hamiltonian equation 63 in terms of raising and lowering operators is

+ 7-5+) + ~ (7+S+ + IS.) (66)
4  / \ ^ /

Hm=Az/z5z +

The last term in equation 66 is zero when A^ = Ay. However, the second term

±1/2, +1/2) states in both the excited and groundremoves the degeneracy of the

nuclear levels. The splitting is illustrated in Fig. 6.27 which also indicates the

second-order nondegenerate perturbation shifts on the adjacent pairs in the excited

nucleus. Two transitions between the split levels are forbidden and the resulting

spectrum consists of ten line shapes.

For the case A^ :» A^ > A„ the axial symmetry is destroyed. The third term in

±1/2, ±1/2) in both excited and ground-equation 66 splits the degenerate levels
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Fig. 6.27. Energy levels and transitions with relative intensities for ̂ ’Fe (effective electronic spin case
S=2) under various magnetic hyperfine interactions. Reproduced by permission from Phys. Rev. (45).

State nuclei. Adjacent levels in the excited nuclear state are shifted in second order

(see Fig. 6.27). The Mossbauer spectrum now has 16 different transition energies.
The above considerations assume static magnetic fields. However, the internal

fields at the nuclear sites are time dependent. The simple case of a random or
randomly fluctuating magnetic field in the z direction is considered below with
particular attention given to rapid fluctuations (fast relaxation) and slow fluctuations

(slow relaxation). To determine whether the magnetic field is changing rapidly, one
compares the time for the field to change polarity (t) with the period (t/,) of the

^armor precession. A magnetic moment /i = y / in  a constant magnetic field
H = (0,0,//) rotates about the z axis with the Larmor frequency 0)^ = yH. The
discussion below is patterned after Blume and Tjon (8).

The line shape for gamma emission is determined by the transition probability (27)
(for an exponential decay law)

I  (/I HW| i) 1^
(£y-£^+£,)2 + rV4

P{E,) = (67)

In equation 67 i and / represent the initial (excited) and final (ground) states
respectively, Ey is the gamma energy, F is the line width, and )-<<+) contains the
creation operator for the photon.

The energies of the nuclear states \ I m) are found from the unperturbed and the
spin Hamiltonians

H = Ho + A,/,(l/2)

where the effective spin is assumed to be constant {S^ = 1/2) for the moment. It is the
effective spin that produces the internal magnetic field at the nucleus. There is a finite
probability for the effective spin to flip to S,  = -1/2; such transitions induce the

time-dependent magnetic fields. The energies calculated from equation 68 are

H \ hm,) = + ̂

(68)

£.= (/ me = E, + g(3H rtie (69a)trie
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H I = £■«

where H is the internal magnetic field, g and g' are Lande factors, and ^ is the Bohr
magneton. The probability for the emission of a photon with energy Ey is obtained by
averaging over the four initial states and summing over final states:

I  {l,m, I \ le me) I'
[Ey- E„- igrrie - g'mg)ftHV + n/4

where E^ = E^ - Eg. \f H = 0, there is one Lorentian peek at Ey =
however, equation 70 implies six Lorentzians when  # 0 with peaks

= £o + igme - g'rrig).
The fluctuations of the magnetic field due to the spin of the electronic spins can be

easily incorporated in the calculations by letting

where/(tj randomly takes on values of ±1.
The generalization of equation 70 for time dependent fields is (8,46)

510

Ef= (69b)-  + g'pH mmm gg

P(£,)= l/4l (70)

(71)

P[Ey) = YRe e  G(t)dt (72)
0

where

lefrie) \^eG(t) = 1/4X1 -iEotIhH<+)S
m^nig

(73)Xexp[-i(g/n^ - g'wo)/3//
0

The bar in equation 73 designates averaging. When the magnetic field is constant,
i.e.,/(fj = 1, one finds

G(t) = 1/4X1 (74)g

If equation 74 is substituted into equation 72, the real part of the resulting integral
gives equation 70.

Defining a = g'ni^ — gnie, the average needed in equation 73 is (1,8)

sinxWt
giajy,')dl' = COSxWt +

where Vf = 1/t is the probability for the effective spin to flip and x = (aVW^ - 1)^.

, i.e., W <s; a anda

= cos a f = l/2(e'“' +

(75)
X

1  .
For slow relaxation r ^ Tl S=5 

(76)
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using equation 75. Equation 76 implies two sets of six Lorentzians (see Fig. 6.27);
there will be six line shapes in the Mossbauer spectrum as pairs overlap.

For fast relaxation W » a and x = = i. The right side of equation 75
becomes

siniWr)
cos/Wt + e~'^‘= e e -Wt= 1 (77)i

using the Euler formula

cos6 + sin0// = cosd - /sin0 = (78)

TT T
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Fig. 6.28. Mossbauer spectra of Ferrichrome A at various temperatures. Reproduced by permission
from Phys. Rev. (45).
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Equation 73 is then simply

I'eG(t) =1/4'Z I U -iEot (79)
rngtiig

and equation 70 reduces to

hme) fH(+)
PiEy)=m'Z (80)

{Ey - E,y + rv4
ttigrtig

The Mossbauer spectrum consists of one line shape. The fluctuations of the magnetic
field are so rapid that the field at the nucleus averages to zero during times of the order

of the Larmor period. Fig. 6.28 indicates how the six line shapes reduce to one as

temperature is increased. Increasing temperature induces rapid spin flips and there
fore fast relaxation. However, due to other factors the resulting single line is non-
Lorentzian.

An alternative approach to relaxation employs the Bloch equations (1,31). A

theoretical spectrum using this approach is given for iron (45,46) in Figure 6.29.
Once again, the six line shapes collapse to one as relaxation times become short.

VI

c
0)

c

-0.8 -0.4 O

Velocity (ctn/tec)

-0 8 -0.4 0 0.4 0.8

iron relaxation spectra for Ferrichrome A with various relaxation times. Reproduced byFig. 6.29.

permission from Phys. Rev. (45).
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APPENDIX

Nomenclature and Conventions for Reporting Mossbauer Spectroscopic Data

I. INTRODUCTION

The guidelines that follow are based considerably on the reports of several groups;
most notably the Mossbauer Spectroscopy Task Group of Committee E-4 (Metallog
raphy) of the American Society for Testing and Materials, the ad hoc Panel on

Mossbauer Data of the Numerical Data Advisory Board of the Division of Chemistry
and Chemical Technology of the National Research Council (USA), and the Commis

sion on Molecular Structure and Spectroscopy (Physical Chemistry Division) of the
International Union of Pure and Applied Chemistry.

n. CONVENTIONS FOR THE REPORTING OF MOSSBAUER DATA

A. TEXT

The text should include information about the following:

1. Method of sample mounting, sample thickness control, sample confinement,
and appropriate composition data for alloys, solid solutions, or frozen solution
samples;

2. Absorber form (single crystal, polycrystalline powder, inert matrix if used,
evaporated film, rolled foil, isotopic enrichment, etc.);

3. Apparatus and detector used and comments about associated electronics (e.g.,
single-channel window, escape-peak measurements, solid-state detector characteris

tics, etc.) if appropriate or unusual; data acquisition time if unusual;

4. Geometry of the experiment (transmission, scattering, in-beam, angular
dependence, etc.); direction and strength of applied magnetic field if used;

5. Critical absorbers of filters if used;

6. Method of data reduction (e.g., visual, computer, etc.) and curve-fitting
procedure; (1)

7. Isomer-shift convention used or the isomer shift of a standard (reference)
absorber. Positive velocities are defined as source approaching absorber. Sufficient
details concerning the isomer shift standard should be included to facilitate interlabor
atory comparison of data;
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8. Method of energy calibration (e.g., calibrated absorber, Michelson interferom

eter, Moire fringes, etc.);

9. An estimate of systematic and statistical errors of the quoted parameters.

B. NUMERICAL OR TABULATED DATA

Information collected and summarized in tabular form should include;

1. Chemical state of source matrix and absorber;

2. Temperarnre of source and absorber and the constancy of these parameters over

the length of the data acquisition period;

3. Values of the parameters required to characterize the features in the Mbssbauer

spectrum (given in mm/s or other appropriate units) with estimated errors (see below
the section on “Terminology, Symbols, and Units” for parameters used);

4. Isomer shift reference point with respect to which the positional parameter is

reported;
5. Observed line widths defined as the full-width at half-maximum peak-height or

other appropriate line width (e.g., line widths calculated by a transmission integral

computer fit, line widths of the single Lorentzian peaks when the spectrum is the
result of a sum of overlapping Lorentzian peaks, etc);

6. Line intensities or (relative) area of each component of the hyperfine interac

tion spectrum observed, if pertinent.

C. FIGURES ILLUSTRATING SPECTRA

Scientific communications in which Mbssbauer effect measurements constitute a

primary or significant source of experimental information should include an illustra

tion of one spectrum (i.e., percent transmission or absorption or counting rate versus

an appropriate energy parameter) to indicate the quality of the data. Such figures
should include the following information;

1. A horizontal axis normally scaled in velocity (mm/s; channel number or

analyzer address values should not be used for this purpose);

2. A vertical axis normally scaled in terms of the effect magnitude, transmission

per scattering intensity, counts per channel, or related units; (2)

3. Statistical counting error limits indicated for at least one data point; (3)

4. Individual data points (rather than a smoothed curve alone) should be shown.

Computed fits should be indicated in such a way that they are clearly distinguished
from the experimental points.



III. TERMINOLOGY, SYMBOLS, AND UNITS

If the units selected by the experimenter are not SI units, they should be defined in the text.

Suggested decimal

multiple of submultiple
SI Units for

Mossbauer data
Definition and

commentsName Symbol SI Unit

Isomer Shift 8 mh mm/s(=10 %i/s) Measure of the energy
difference between

the source (£,) and

the absorber (£„)
transition. The

measured Doppler velocity
shift, 8, is related

to the energy difference

by = Ey\lc

(where Ey is the

Mossbauer gamma energy

and c is the speed of

light in a vacuum). W’W

The parameter that is

the proportionality
constant between the

nuclear moment and the

angular momentum. ®

Nuclear/gyromagnetic ratio y

Ln



ni. TERMINOLOGY, SYMBOLS, AND UNITS (Cont.)

Suggested decimal

multiple of submultiple
SI Units for

SI Unit Mossbauer data

Definition and

comments
SymbolName

Magnetic flux density
at the nucleus (from

experiment) in those
cases in which the

magnetic hyperfine
interaction can be

described by an effective
field. In other cases

the tensor components

of the magnetic hyperfine
interaction should be

reported if possible.

The energy difference

between two adjacent
levels that are the

results of the interaction

of the nuclear magnetic

dipole moment and the

magnetic flux density.

Used when the magnetic

hyperfine interaction

is to be described by ̂  ̂

(5)

the Hamiltonian / ■ A ● SP~>

A parameter that
describes the effective

shape of the equivalent

TBMagnetic flux density

mm/s(= 10 %/s)yhB JMagnetic hyperfine splitting

mm/s(= 10 %/s)JA^,Ay,A^Components of the

magnetic hyperfine
interaction tensor

Cm2eQNuclear quadrupole moment

(spectroscopic)



ellipsoid of nuclear

charge distribution

Q>0 for a prolate (e.g.,

5’Fe, ‘^’Au) and Q < O

for an oblate (e.g.,

"®Sn, *2^1) nucleus.

A second-rank tensor

describing the electric

field gradient specified

by 7) and V

d'^Vldz^ = eq (e is the

proton charge, is

the largest component

of the diagonalized EFG).

Product of V^lh and

the nuclear quadrupole

moment, eQ.

= (V^ - Vyy)!V

Full width at half

maximum of the

observed resonance

line(s).

Theoretical value of

the full width at half

maximum, usually
calculated from lifetime

data.

(8)
ZZ'

ZZ-

Wm^Electric field gradient (EFG)
tensor

Vlm'^Principal component of EFG -VZZ

e^qQlh Hz MHz(= lO'^Hz)Quadrupole coupling constant

Asymmetry

Line width

V

m/s mm/s(=10 ^m/s)W

mm/s(=10 %n/s)Namral line width m/sWo

Ui



m. TERMINOLOGY, SYMBOLS, AND UNITS (Cont.)
00

Suggested decimal

multiple of submultiple
SI Units for

SI Unit Mossbauer data

Definition and

comments
SymbolName

The difference

in the transmitted or

scattered intensity at
resonance maximum and

off-resonance, relative

to the intensity off
resonance.(9)

/oResonance effect magnitude

The fraction of all

gamma rays of the
Mossbauer transition

which are emitted (/j)

or absorbed (/„) without

recoil energy loss.''®’

The effective thickness

of a source (r j) or an

absorber {to) in the

optical path.
(11)

/Recoil-ffee fraction

Mossbauer thickness t

The cross section for

resonant absorption of

the Mossbauer gamma

Resonance/cross section 0-0

(12)ray.

When the vibrational

anisotropy tensor

({x^ij))is axially

Vibrational anisotropy

»■ >4



■% >0

symmetric = (1/X^)
((^1 ) - (xi )) where

{j:| ) and {x\ ) are the
mean square vibrational
amplitudes of the Mossbauer
nucleus parallel and
perpendicular to the
cylindrical symmetry
axis through the Mossbauer
atom and X is the
wavelength of the
Mossbauer radiation
divided by 2tt.

Cfi
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FOOTNOTES

0) If data are analyzed by computer, a brief description of the program should be given to identify the

algorithm used. The number of constraints should be specified (e.g., equal line widths or intensities,
etc.) and a measure of the goodness of fit should be indicated.

If measurements of very high accuracy are reported and the discussion of the reality of small effects is

an important part of the work, then the following items should be included;

the functional form and all parameters used in fitting (i.e., the constraints should be clearly

stated);

b. the treatment of the background (e.g., assumed energy independent, experimentally subtracted,

etc.);

c. the relative weighting of abscissa and ordinate (e.g., equal weighting);

d. a measure of the statistical reliability;

e. the number of replications and the agreement between these if applicable;

f. an estimate of systematic errors as primary results.

It has become customary to display data obtained in transmission geometry with the resonance

maximum “down” and scattering data with the resonance maximum “up. ” In either case, sufficient data

should be shown far enough from the resonance peaks to establish the nonresonant base line.

In most instances (where the data are uncorrected counting results), the standard deviation (i.e.,

the square root of the second moment of the distribution) is given by ± Ap, where N is the number of

counts scaled per velocity point. For corrected data (i.e., when background or other nonresonant effects

are subtracted from the raw data), the propagated eiror should be computed by normal statistical methods

which are briefly described in the figure legend. Fiducial marks bracketing the data points to show the

magnitude of the standard deviation are often used in indicating the spread of the data.

(“*1 The center of a Mossbauer spectrum is defined as the Doppler velocity at which the resonance

maximum is (or would be) observed when all magnetic dipole, electric quadrupole, etc. hyperfine

interactions are (or would be) absent. The contribution of the second-order Doppler shift should be indi

cated, if possible. The isomer shift is the sum of this term and the chemical isomer shift.

(3) The SI unit of energy for isomer shift, quadrupole-coupling constant, quadrupole splitting, and

line width is the Joule. The measured quantity is the velocity {mis) which can be converted to the desired

energy units.

W The nuclear gyromagnetic ratio can be expressed in terms of the nuclear g factor (Lande factor) as

yh = gjLiv where is called the nuclear magneton and is defined as/iv = eA/2mpC (m^ is the mass of

the proton). Another quantity that is often used is the nuclear magnetic moment (p.) which is related to y

andgby/a = yhl = g/xy/. The usual unit for ̂ lis/xv, ie., nuclear magnetons. Note that the units of

yh are JT~^.

In the case of an isotropic interaction the symbol “a” is used (i.e., a = = Ay = A^.

a.

The sum + Vyy+ regardless of the choice of axes. In the absence of magnetic hyper¬
fine interaction, principal axes are chosen so that the off-diagonal matrix elements vanish,

Vij = 0{ij = x,z\ i * j) and are defined such that \  \ » \ Vyy \ S: \ V^x \ , so that 0 « t; « 1.

(EFG),y = -{d^VldXidXj),v/hsre Xi,Xj = x,y,orz-
® This parameter is calculated from the relationship/o = [A(<x>) - A(0)]/A(«>), where A(0) is the

counting (or transmission or scattering intensity) at the resonance maximum, and Ai(<») is the correspond

ing rate at a velocity at which the resonance effect is negligible. If corrections for nonresonant gamma- or

X-rays, or other base line corrections have been made in evaluating /q, these should be listed.
The recoil-free fraction can be related to the expectation value of the mean square displacement

of the Mossbauer atom by the relationship / = exp(- k?{x'^)) where k is the wave number of the

Mossbauer gamma ray and x is the displacement taken along the optical axis,

('h The t parameter is usually calculated from the relationship t = n ■ ■ lA, in which n is the

number of Mossbauer element atoms per unit area in the optical path, (Tq is the cross section for recoilless

scattering, lA is the fractional abundance of the Mossbauer transition active nuclides, and/is the recoil-

free fraction {vide supra).

>
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This parameter is usually calculated from the relationship

o-o = {hVl2Tr}E-^(l + 2/,)(l + 2Ig)-\l + UtTW/qI2W a),

where Ey is the transition energy; Wa is the absorber Une width; and /j are the excited and ground-
state spins, respectively, and aj- is the total internal conversion coefficient of the Mbssbauer transition.
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