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Physics I with Calculus, Prof. Ruiz (Doc), UNC-Asheville (1978-2021), DoctorPhys on YouTube 
Chapter M. Rotational Dynamics. Prerequisite: Calculus I. Corequisite: Calculus II. 
 
M0. Rotational Dynamics Strategy. First let’s review the steps we take when solving problems in 
translational dynamics and be philosophical. In such cases, we usual have motion in one or two 
directions. Of course, we can have motion in three dimensions, but in introductory physics 
courses many of the problems involve two dimensions. Our approach has been to use four steps 
as follows. 
 

(i) The Sketch. We first make a sketch of the problem. 
 
(ii) The Force Diagrams. We then make a force diagram for each mass. 
 

We place the masses at the origin in such diagrams and then draw in the forces. 
These diagrams with the mass freely placed at the origins are called free body 
diagrams. However, you can draw the forces on the actual sketched diagram of the 
first step. I will do this often for rotational dynamics since the positions of the forces 
are important for calculating the torques. 

 
(iii) Equations of Motions. Then it is time for applying Newton’s Second Law for each mass. 
 

x xF ma=  

 

y yF ma=  

 
We choose our axes so that one of the accelerations in the above equations is zero. 
 
Also in this step, there could be a needed auxiliary equation such as 
 

kf N= . 

 
(iv). Solving the Equations. Next comes the algebra. We solve the equations of step (iii), 

often for the acceleration and other parameters like tensions in ropes. 
 

I like to encase the above within a general guiding principle for all problems in any field, where 
there is a question, an application of laws, a reflection on the answer, and communication. These 
broader steps are summarized in the mnemonic Inquiry-ARC pr I-ARC, where I is the inquiry or 
question, A is the application, R is the reflection, and C is communication. 
 
In physics, the I is the given – you have a question and given parameters with symbols and often 
specific values. For the A, we have application of the laws. You can think of the four steps given 
above (i to iv) as the details for our application. Then when we get the answer we are not finished. 
We need to R = reflect on our answer to verify and certify that it is correct. Often, I derive a 
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general formula for the situation, even though numbers may be supplied in the given. I will 
typically insert the values at the end. But before doing so, I check extreme cases with the 
formulas. Perhaps I take one mass to be infinitely large and see what is predicted. These extreme 
values will be simpler versions of the problem and one where you know the answer. You check 
your answer in this way. 
 
When I was a graduate student at the University of Maryland, my mentor Prof. David Falk would 
say he has to check his answers. He would often do the problem another way. As a teaching 
assistant in graduate school I would hope the problem was an odd-numbered problem since the 
book would typically have answers to the odd problems at the back of the book. That approach 
is a weak one of course. So, two ways to reflect on your analysis and answer are these two below. 
 
I. Examine Extreme Cases. 
 

 Let a parameter take on extreme values and see if your formulas make sense. 
 
II. Solve the Problem Another Way. 
 

Richard Feynman once said something to the effect that a good physicist can see a problem 
from about 5 or 7 approaches. 

 
Of course, there is nothing wrong with checking the answer with one in the book or another 
book, or googling. Scientists often work in teams. But the two gold standards for reflecting on 
your work are the extreme cases and the alternative solutions. 
 
Finally, for C, the communication, I make sure my dimensions are correct. If I am solving for a 
force, the units need to be newtons or a unit for force. I will usually perform this step first as part 
of my reflection, but I like to list it under communication so I can have two golden rules for 
communication. 
 
 1. Are the Dimensions Correct? 
 
 2. Do I Have the Correct Amount of Significant Figures? 
 
Significant figures are important. If values are supplied in the problem, I need to examine how 
many significant figures are given for the parameters. The numerical answer must be consistent 
with the number of significant figures. The Chemistry Rule is to strictly use the amount of 
significant figures for the weakest link, i.e., the amount of significant figures for the most 
uncertain parameter. The Engineering Practice is to give three significant matters even if one 
parameter is given with two significant figures. Ask your teacher what you should do. When I 
taught Physics, I would be okay with students using either the Chemistry Rule or the Engineering 
practice. Lots of books these days are giving the decimal point and zero such as 20.0 kg or 50.0 
m/s to clearly communicate significant figures at the start. 
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For the rotational problems, the steps are all the same with the addition of the torque equation 
and a new auxiliary equation that relates the translational acceleration to the rotational 
acceleration a R= .  
 
What is this additional torque equation we are going to add? Let’s arrive at an approach in 
general. We start with the following equations from Chapter K Rotation. 
 

dl

dt
 =           r F =            l r p=             

 
We will study in this chapter solid objects made of mass elements all rotating around a common 
axis. Therefore, we can drop the vector sign but we need to consider the object as having mass 
elements since bits of mass at different distances from the axis of rotation will give different 
rotational inertias. 

dl

dt
 =           i i i i i

i i

l r p rm v= =   

 
Since all the mass points rotate about a common axis with angular velocity and angular 

acceleration satisfying the equations i iv r=  and i ia r= , we can write 

 
2 2( ) ( )i i i i i i i i i i

i i i i

l rm v rm r r m m r I   = = = = =     

 

Then, when we apply 
dl

dt
 =  for the fixed rotational inertia, we find 

 
dl

dt
 =      =>     ( )

d
I

dt
 =      =>     

d
I

dt


 =      =>     I =  

 
Think of the last equation as being analogous to F ma= . The three basic equations for rotational 
dynamics are then simply 
 

F ma= , 

 

I = , 

 
a R= . 

 
You will also need to use the formula for the moment of inertia specific to your problem. The 
best way to see how all this works is to see an example. The next section will serve our purpose 
here. Actually, the rest of the chapter consists of examples. There are 10 in all and they cover the 
repertoire of traditional problems studies and assigned in rotational dynamics. 
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M1. Rolling Down an Incline.  In this section we consider objects that roll down an incline without 

slipping. First consider a rolling cylinder. The acceleration will be found to be 
2

sin
3

a g = . See 

the figure below for the steps. The cylinder mass is M  and the moment of inertia is 21

2
I MR= . 

 
The forces have been added to the sketch. These forces are the force due to gravity, the normal 
force, and the friction which allows the cylinder to roll rather than slip. 
 
Then we sum the forces down the incline. 
 

sinF Mg f Ma= − =  

 
We can go right to the torque equation. 
 

21
( )
2

f R I MR  = = =  

 
The auxiliary equation is the connecting equation 
 

a R= . 
 

I like to work from the third equation up like we did for friction problems when the auxiliary 
equation related the friction to the normal force. Here we do not need such a friction equation. 

Watch how friction will drop out. First substitute 
a

R
 =  into 21

2
f R MR = : 

 

21

2

a
f R MR

R
= . 

 
Watch how the radius drops out. 

 
1

2
f Ma=  

 
Now substitute this equation in the first one sinMg f Ma − =  to obtain 
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1

sin
2

Mg Ma Ma − = . 

 
The masses drop out. 

 
1

sin
2

g a a − =  

 
Solve for the acceleration. 

 
1

sin
2

g a a = +  

 
3

sin
2

g a =  

 
2

sin
3

a g =  

 
Another interesting question is what is the speed at the bottom of the ramp is the cylinder starts 
from rest and the height of the ramp is h. We use conservation of energy, remembering that 
kinetic energy has two parts: translational and rotational. Let position 1 be at the top of the 
incline and position 2 be at the bottom. Conservation of energy leads to 
 

1 1 2 2K U K U+ = + , 

 

2 20 Mgh K U+ = + , where 

 

2 2

2

1 1

2 2
K M v I= +  and 2 0U = . 

 
These relations lead to 

 

2 21 1
0 0

2 2
Mgh M v I+ = + + . 

 

The connecting equation v R=  is important for the next step, along with 21

2
I MR= . 

 

2 21 1
( )

2 2

v
Mgh M v I

R
= +  
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2 2 21 1 1
( )( )

2 2 2

v
Mgh M v MR

R
= +  

 

2 21 1

2 4
Mgh M v M v= +  

 

23

4
Mgh M v=  

 

23

4
gh v=  

 

4

3
v gh=  

 
We would like to repeat this calculation for the hoop, solid sphere, and spherical shell. But rather 
than perform the calculation three more times, we note that the moments of inertia have the 
form 

2I MR= , 
 

where   is a value such as 1  (hoop), 
1

2
 (cylinder),  

2

5
 (sphere), and 

2

3
 (spherical shell). 

 

We do the rolling problem in general now with 2I MR= . The three basic equations are below. 
 

sinF Mg f Ma= − =  

 
2( )f R I MR   = = =  

 
a R=  

 
We solve these equations like before with the   in there. 

 

Substitute 
a

R
 =  into 2( )f R MR = , to find 

 

2( )
a

f R MR
R

= , 

 
f Ma= . 
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Then, this equation is used in sinMg f Ma − = . 

 
The result is 

 
sinMg Ma Ma − = . 

 
The masses drop out, 

 
sing a a − = , 

 
and we readily solve for the acceleration, 

 
sing a a = +  

 
sin (1 )g a = +  

 
sin

1

g
a




=

+
 

 
For the velocity at the bottom 

 

2 21 1
( )

2 2

v
Mgh M v I

R
= +  

 

2 2 21 1
( )( )

2 2

v
Mgh M v MR

R
= +  

 

2 21 1

2 2
Mgh M v M v= +  

 

2 21 1

2 2
gh v v= +  

 
2 22gh v v= +  

 
22 (1 )gh v = +  

 

2

1

gh
v


=

+
 

 
Now we can make a table with all the results. 
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Object Ring Battery Marble Ping-Pong 

Physics Hoop Cylinder Sphere Shell 

Rotational 
Inertia 

2MR  21

2
MR  22

5
MR  22

3
MR  

  
 

1  1/ 2  2 / 5  2 / 3  

sin

1

g
a




=

+
 

1
sin

2
g   

2
sin

3
g   

5
sin

7
g   

3
sin

5
g   

2

1

gh
v


=

+
 

gh  4

3
gh  

10

7
gh  

5

4
gh  

Photo Credit RJ Katthöfer1 Roadsidepictures1 fdecomite2 Philippe Put3 

 
1Photo from flickr, License: Attribution-NonCommercial-NoDerivs 2.0 Generic 
2Photo from flickr, License: Attribution 2.0 Generic 
3Photo from flickr, License: Attribution-NonCommercial 2.0 Generic 
 
Which object wins the race down the incline? The winner is the solid sphere. The order of the 
competitors in the are: 
 

Sphere (1st place), Cylinder (2nd place), Spherical Shell (3rd place), and Hoop (4th place). 
 

When the mass “hugs” the axis of rotation, you have a faster rolling object! 
  

https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by/2.0/deed.en
https://creativecommons.org/licenses/by-nc/2.0/
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M2. A Car and the Incline.  When I taught this chapter in class I would start the class asking the 
students which object would win a race down an incline. I brought a wooden board to class with 
a marble, cylinder (tinker toy cylinder, a ping-pong ball, and a hot-wheels car. We took votes and 
then had races with two objects at a time. The objects then eliminated each other. I saved the 
car for last since I knew it would win. 
 

HotWheels – Ferrari 458 Italia 

 
 

Courtesy Leap Kye, flickr. License: Attribution-NoDerivs 2.0 Generic. 
 
The secret as to why the car wins is that only the wheels down. The body of the car adds mass to 
the weight due to the pull of gravity. We will work out a general formula where each wheel has 
mass m and the body of the car (minus the wheels) has mass M. The total mass of the car is then 
 

4carM M m= + . 

 
The following figure illustrates the calculation. 

 
The figure comes from my old notes c. 1980. 

 

https://creativecommons.org/licenses/by-nd/2.0/
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Note how working from the bottom up is a workable approach. I will start from scratch below 
and show every step. The figure I have below is flipped. It doesn’t matter which way the ramp 
faces. 

 
First, F ma=  leads to 
 

( 4 ) sin 4 ( 4 )M m g f M m a+ − = + , 

 
where there are four wheels, each with 
mass m . 
 
Second, the torque equation I = , 
gives 

21

2
fr I mr = =  

 
for each wheel. The connecting 
equation is a r= . 
 

The three equations are 
 

( 4 ) sin 4 ( 4 )M m g f M m a+ − = + , 

 

21

2
fr mr = , 

 
a

r
 = . 

 

Working from the bottom up, substitute 
a

r
 =  into 21

2
fr mr =  to obtain 
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21

2

a
fr mr

r
= . 

 
The r parameters will cancel. 

 
1

2
f ma=  

 
Then, we substitute this equation in ( 4 ) sin 4 ( 4 )M m g f M m a+ − = + . 

 
1

( 4 ) sin 4( ) ( 4 )
2

M m g ma M m a+ − = +  

 
Solve for the acceleration. 

 
1

( 4 ) sin ( 4 ) 4( )
2

M m g M m a ma+ = + +  

 
( 4 ) sin ( 4 ) 2M m g M m a ma+ = + +  

 
( 4 ) sin ( 6 )M m g M m a+ = +  

 

4
sin

6

M m
a g

M m


+ 
=  + 

 

 
Dimensions look good as the mass ratio is dimensionless and we are left with acceleration g. 
 
Check when the mass of the body of the car vanishes. Do we get the cylinder result? 
 

0 0

4 0 4 4 2
lim lim sin sin sin sin

6 0 6 6 3M M

M m m m
a g g g g

M m m m
   

→ →

+ +   
= = = =   + +   

 

 
It checks out. 

 
What about when the wheel masses go to zero. 

 

0 0

4 0
lim lim sin sin sin sin

6 0m m

M m M M
a g g g g

M m M M
   

→ →

+ +   
= = = =   + +   

 

 
Wow! HotWheels cars with their small wheels will be the winner! 

 
The HotWheels car will beat our other objects. 
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In fact, it will beat all objects where the entire object rolls! 

 

This conclusion follows by comparing with 
sin

1

g
a




=

+
. 

 

For rolling masses ( 2I MR= ) the parameter 0  . 
 

Therefore, 
 

sin
sin

1

g
a g





= 

+
. 

 
The car with tiny wheels approaches the acceleration of a block sliding down an incline with no 
friction. I remember seeing a physics problem book from the 1970s where there they had 
problems where they made the rolling cars with tiny wheels. They did these diagrams to achieve 
the equivalent of a mass sliding with no friction. The car with tiny wheels rolling on a surface with 
friction to get those wheels turning is more realistic. The book was General Physics Workbook: 
Physics Problems and How to Solve Them by Foster Strong at Caltech (W. H. Freeman and 
Company, San Francisco, 1972). 
 

Standing in Race Object Acceleration 
a  sin

a

g 
 

1st Place Hot Wheels Car sing   1.00  

2nd Place Sphere 5
sin

7
g   

0.70 

3rd Place Cylinder 2
sin

3
g   

0.67 

4th Place Shell 3
sin

5
g   

0.60 

5th Place Hoop 1
sin

2
g   

0.50 

 
I did not have a hoop in class. I would be hard to roll a ring. But you could roll a hollow cylinder. 
That would be the same as a hoop. I didn’t have one at the time. 
 
One last thing is the find the speed of the car at the bottom of a ramp. Since the car would hit 
the table, we would use a height h  that doesn’t exactly reach the table. 
 

2 21 1
( )

2 2

v
Mgh M v I

R
= +  
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2 2 21 1
( )( )

2 2

v
Mgh M v MR

R
= +  

 

2 21 1

2 2
Mgh M v M v= +  

 

2 21 1

2 2
gh v v= +  

 
2 22gh v v= +  

 
22 (1 )gh v = +  

 

2

1

gh
v


=

+
 

 
We start with conservation of energy. 
 

1 1 2 2K U K U+ = + . 

 
where 

 

1 0K = , 

 

1 ( 4 )U M m gh= + , 

 

2 2

2

1 1
4

2 2
car wheelK M v I v= + , 

 

2 0U = . 

 
Conservation of energy is then 

 

2 21 1
( 4 ) ( 4 ) 4( )

2 2
M m gh M m v I+ = + +  

 

2 2 21 1 1
( 4 ) ( 4 ) 4 ( )

2 2 2
M m gh M m v mr 

 
+ = + +  

 
 

 

2 2 21
( 4 ) ( 4 )

2
M m gh M m v mr + = + +  
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2 21
( 4 ) ( 4 )

2
M m gh M m v mv+ = + +  

 

21
( 4 ) ( 6 )

2
M m gh M m v+ = +  

 
22( 4 ) ( 6 )M m gh M m v+ = +  

 

2( 4 )

( 6 )

M m gh
v

M m

+
=

+
 

 

4
2

6

M m
v gh

M m

+
=

+
 

 

When you can neglect the wheels, you get 2v gh=  the result for falling through height h . 

 
Do you get the cylinder result when 0M = ? 

 
My Hot Wheels car with tiny wheels is the left one in the figure below. 
 

 
Hot Wheels Car with Tiny Wheels at the Left with a Daughter. Photo by doctorphys. 
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M3. Yo-yo.  The yo-yo, also spelled yoyo, is a nice example of rotational dynamics. 
 

 
Courtesy Enrique Calabuig, flickr. License: Attribution-ShareAlike 2.0 Generic 

 
We model the yo-yo as a cylinder where we neglect slight 
deviations in shape and neglect the narrow gap to make 
room for the string. 
 
We want to find the acceleration for the yo-yo and the 
velocity if it falls a distance h  from rest. 

 
The yo-yo has two radii for us to consider. The inner radius 
r  is where the string acts on the yo-yo. The outer radius 
R  is the larger radius that takes us to the edge of the yo-
yo. The mass of the yo-yo is M . 

 
The torque on the yo-yo is equal to the tension in the 
string multiplied by the radius r . Note that the tension 
force is perpendicular to the radius. Therefore, 
 

sin90r F rF n rFn =  =  = , 
 

https://creativecommons.org/licenses/by-sa/2.0/deed.en
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where F  is the force on the string pulling up and the unit vector n  points out of the page or 
computer monitor. The motion is counterclockwise. You can curve your right-hand fingers along 

the circle and your thumb will point out of the page, i.e., in the direction of n . 
 

The forces have been added in the diagram at the left. We 
proceed to the three equations: (i) F ma= , (ii) I = , 

and (iii) a r= , where for the yo-yo 21

2
I MR= . 

 
(i) Mg T Ma− =  

 

(ii) 21

2
rT MR =  

 

(iii) 
a

r
 =  

 
Why is the small radius the one to use here? 

 
Start at the bottom as usual. Substitute (iii) in (ii). 

 

21

2

a
rT MR

r
=  

 
Usually R  drops out, but will not here since there are two radii. 
 

2

2

1

2

R
T M a

r
=  

 
Now we use this result in the (i). Then, 
 

Mg T Ma− =  becomes 
2

2

1

2

R
Mg M a Ma

r
− = . 

 
Solve for the acceleration. 

 
2

2

1

2

R
Mg Ma M a

r
= +  

The mass drops out. 
2

2

1

2

R
g a a

r
= +  
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2

2

1
(1 )

2

R
g a

r
= +  

 

2

2

1
1

2

g
a

R

r

=

+

 

 

Let’s do a quick dimensions check. The dimensions are correct since 
R

r
 is dimensionless and the 

dimensions of acceleration a  match with the dimensions of g. My preference is to clean the 

formula up a little by multiplying to and bottom by 22r . 
 

2

2 2

2

2

r
a g

r R
=

+
 

 
Is this answer reasonable? Let’s look into two extreme cases. 
 
Case 1. The inner radius 0r = . In this case there is no longer any torque and the acceleration is 
 

2

2 2 20 0

2 0
lim lim 0

2 0r r

r
a g g

r R R→ →
= = =

+ +
. 

 
The string connects at the center of the yo-yo and there is no motion. 

 
Case 2. The inner radius r R= . In this extreme we have the unwrapping disk or cylinder. 
 

2 2 2

2 2 2 2 2

2 2 2 2
lim lim

2 2 3 3r R r R

r R R
a g g g g

r R R R R→ →
= = = =

+ +
 

 

Remember our rolling cylinder going down an include and the formula 
2

sin
3

a g = ? The 

unwrapping disk is like taking    to approach 90°. Then, 
 

90

2 2 2
lim sin sin90

3 3 3
g g g




→ 
=  = . 

 
It checks out! 

 
For the velocity after the yo-yo unwinds from rest through a distance height of h  we use 
conservation of energy. 
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1 1 2 2K U K U+ = +  

 

2 21 1
0 0

2 2
Mgh M v I+ = + +  

 

2 2 21 1 1
( )

2 2 2
Mgh M v MR = +  

 
But we have to be careful with the angular velocity   since v r= , where the inner radius is 
used. 

2 2 21 1 1
( )( )

2 2 2

v
Mgh M v MR

r
= +  

 
The mass still drops out by we are left with radii in the formula. 
 

2 2 21 1 1
( )( )

2 2 2

v
gh v R

r
= +  

 
2

2 2

2

1 1 1
( )

2 2 2

R
gh v v

r
= +  

 
2

2 2

2

1
2

2

R
gh v v

r
= +  

 
2

2

2

1
2 (1 )

2

R
gh v

r
= +  

 

2

2

2

1
1

2

gh
v

R

r

=

+

 

 

2

2

1
2

1
1

2

v gh
R

r

=

+

 

 
2

2 2

2
2

2

r
v gh

r R
=

+
 

 
Is this answer reasonable? The dimensions check out. Why? 
 
Another check is to do the problem another way. We know the acceleration formula 
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2

2 2

2

2

r
a g

r R
=

+
. 

 
We can get the final velocity from our kinematic formula 

 
2 2

02ad v v= − , 

 

where d h=  and 0 0v = . 

 
Then, 

 
2

2

2 2

2
2

2

r
g h v

r R

 
= 

+ 
 

 
2

2

2 2

2
2

2

r
v gh

r R

 
=  

+ 
 

 
2

2 2

2
2

2

r
v gh

r R
=

+
 

 
It checks out! 

 
What about a final check with our cylinder rolling down the incline? 

 

From our incline section, the cylinder gives 
4

3
v gh=  with no dependence on the incline angle. 

 
To compare formulas, we take r R= . 

 
2 2 2

2 2 2 2 2

2 2 2
lim lim 2 2 2

2 2 3r R r R

r R R
v gh gh gh

r R R R R→ →
= = =

+ +
 

 
2

2

2 2 4
lim 2 2

3 3 3r R

R
v gh gh gh

R→
= = =  

 
And again, the formulas check out. 

 
We end this section with some numbers. The Duncan Yo-Yo has a mass of 67.9 grams and radius 

2.8 mmR = . An actual yo-yo does not have a constant inner radius r  since as the string unwinds, 
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the inner radius changes. We will make an approximation by taking 
4

R
r = . The acceleration 

actually only depends on the ratio /R r  if we consult the acceleration formula in the form 
 

2

2

1
1

2

g
a

R

r

=

+

. 

 

Using 
4

R
r = , i.e., 4

R

r
= , 

 

2
2

2

1

1 161 1 8 9
1 (4) 11

2 22

g g g g
a g

R

r

= = = = =
+

+ ++

 

 

2 2

1 1 m m
9.8 1.09 1.1 

9 9 s s
a g= =  = =  

 
I prefer the following form for the answer. 

 
1

9
a g=  

 
The speed after falling one meter is 
 

2

2

1
2

1
1

2

v gh
R

r

=

+

. 

 

2

1 1 1 2 2 m
2 1 2 2 9.8 1.48 1.5

1 1 1 8 9 9 s
1 4 1 16

2 2

v g g g g=  = = = =  = =
+

+ + 

 

 
How long does it take to get down there? 

 
We can use v at= . 

 
1.48

1.36 1.4 s
1.09

v
t

a
= = = =  
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M4. Hanging Mass and Rotating Pulley.   
 

A mass m  is hanging and rotating a disk pulley 
of mass M  and radius R  as shown in the 
figure. 
 
(a) What is the acceleration of the mass and 
tension in the rope? 
 
(b) What is the velocity if the mass falls from 
rest through a distance of height h . 
 
(c) What is the angular velocity   at this point? 
 
(d) What is the time to fall the distance h ? 
 
(e) Find the answers to the above parts for the 

values 
 

10 kgM = , 30 cmR = , 2 kgm= , 50 cmh = . 

 
We start the analysis by labeling the forces. 

 
(a) The acceleration. We proceed to the 
three equations: (i) F ma= , (ii) I = , and 

(iii) a R= , where for the yo-yo 21

2
I MR= . 

 
(i) mg T ma− =  

 

(ii) 21

2
RT MR =  

 

(iii) 
a

R
 =  

 
Insert (iii) in (ii). 
 

21

2

a
RT MR

R
=      =>     

1

2
T Ma=  
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Next substitute the tension 
1

2
T Ma=  in (i). 

1

2
mg Ma ma− =      =>     

1

2
mg ma Ma= +      =>     

1
( )

2
mg m M a= +  

Solve for the acceleration. 
 

1
( )

2
mg m M a= +      =>     

1

2

m
a g

m M

=

+

     =>     
2

2

m
a g

m M
=

+
 

    
2

2

m
a g

m M
=

+
 

 
1

2
T Ma=  

 

2

mM
T g

m M
=

+
 

 
Are these answers reasonable? 

 
The dimensions are correct since the mass dimensions cancel in the acceleration equation. 

 
For the tension equation there is an extra mass factor giving a force. 

 
We check some cases. 

 
Case 1. Super Large Mass M . 

2
lim lim 0

2M M

m
a g

m M→ →
= =

+
 

 
The hanging mass just hangs there. The weight should be mg. Let’s check. 

 

lim lim lim
22 0 1

1
M M M

mM m m
T g g g mg

mm M

M

→ → →
= = = =

+ +
+

 

 
Case 2. Super Small Mass M . The hanging mass will be in free fall with no string tension. 
 

0 0

2 2
lim lim

2 2 0M M

m m
a g g g

m M m→ →
= = =

+ +
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0 0
lim lim 0

2M M

mM
T g

m M→ →
= =

+
 

 
Case 3. Super Small Mass m . Let the hanging mass be a feather. There is no acceleration and the 
mass hangs there with negligible tension in the rope: 

 

0 0

2
lim lim 0

2m m

m
a g

m M→ →
= =

+
     and     

0 0
lim lim 0

2m m

mM
T g

m M→ →
= =

+
. 

 
Case 4. Super Large Mass m . The hanging mass is in free fall causing the pulley to turn. 
 

2 2
lim lim lim

2
2

m m m

m
a g g g

Mm M

m

→ → →
= = =

+
+

    and    
1

lim lim lim
2 2

2
m m m

mM M
T g g Mg

Mm M

m

→ → →
= = =

+
+

. 

 
But since we are in free fall shouldn’t the tension be zero? 

 
We need to be careful with limits. The best way to see through this situation is to use values that 
are not infinity. Whenever in doubt with limits, use this trick. Let 50m M=  rather than infinity. 
 

2 2(50 ) 100 100

2 2(50 ) 101 101

m M M
a g g g g g

m M M M M
= = = = 

+ +
 

 
1 1 100 50 1

2 2 101 101 2
T Ma M g Mg Mg= = =   

 
Now we check if mg T ma− = ? 

 

We now substitute 50m M= , 
100

101
a g= , and 

50

101
T Mg= . 

 

mg T ma− =      =>     
50 100

50 (50 ) ?
101 101

Mg Mg M g− =  

 

50 100
50 (50) ?

101 101
− =      =>     

100 50
50 (50) ?

101 101
= +      =>     

100 1
50 (50) ?

101 101

 
= + 

 
 

 

101
50 (50) ?

101

 
=  

 
     =>     50 50?=  

 
The answer is yes and we are good! 
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There is no contradiction. 
 

 
 
(b) The velocity. Conservation of energy: 
 

1 1 2 2K U K U+ = +  

 

2 21 1
0 0

2 2
mgh mv I+ = + +  

 

2 2 21 1 1
( )

2 2 2
mgh mv MR = +  

 
The angular velocity   is related to the linear velocity v  by v R= . 
 

2 2 21 1 1
( )( )

2 2 2

v
mgh mv MR

R
= +  

 

2 21 1 1
( )

2 2 2
mgh mv M v= +  

 
2 24 2mgh mv Mv= +  

 
24 (2 )mgh m M v= +  

 

2 4

2

mgh
v

m M
=

+
 

 

4

2

mgh
v

m M
=

+
 

 
(c) The angular velocity. 

v

R
 =      =>     

1 4

2

mgh
v

R m M
=

+
 

 
(d) The time. 

(2 )

44

2

h h m M h
t

v mgmgh

m M

+
= = =

+
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(e) Numbers. 
 

10 kgM = , 30 cmR = , 2 kgm= , 50 cmh =  

 

2

2 2 2 4 m
9.8 9.8 2.8 

2 2 2 10 14 s

m
a g

m M


= =  = =

+  +
 

 

4 4 2 9.8 0.5 39.2 m m
1.67 1.7 

2 2 2 10 14 s s

mgh
v

m M

  
= = = = =

+  +
 

 
1.67 rad

5.57 5.6
0.30 s

v

R
 = = = =  

 
0.3

0.18 s
1.67

h
t

v
= = =  

 
M5. Dropping Mass with Rotating Pulley and Sphere.   
 

This problem is similar to the last 
one. We just added a rotating 
sphere to the system. 
 
The questions are” 
 
(a) What is the acceleration? 
 
(b) What are the tensions in the 
cables? 
 
(c) Find the speed when the 
hanging mass travels through a 
distance h starting from rest. 
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The equations are below. 
 

1 1 1I =    =>   2

1 1 1 1

1

2

5

a
T r m r

r
=  

 

2 2 2I =   =>  2

2 1 2 2 2

2

1
( )

2

a
T T r m r

r
− =  

 

3 3F m a=    =>   3 2 3m g T m a− =  

 
Simplifying slightly brings us to 
 
 

1 1

2

5
T m a=  

 

2 1 2

1

2
T T m a− =  

 

3 2 3m g T m a− =  

 
(a) The Acceleration. Add the equations, taking advantage of Newton’s Third Law of Action and 
Reaction. 
 

3 1 2 3

2 1

5 2
m g m a m a m a= + +  

 

3 1 2 3

2 1
( )
5 2

m g m m m a= + +  

 

3 1 2 310 (4 5 10 )m g m m m a= + +  

 

3

1 2 3

10
( )
4 5 10

m
a g

m m m
=

+ +
 

 

Dimensions look good and 
3 3

3

1 2 3

10
lim lim ( )

4 5 10m m

m
a g g

m m m→ →
= =

+ +
 as expected. 

 
And if the sphere or disk mass goes to infinity, there is no acceleration. 

 
(b) The Tensions. 
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1 1

2

5
T m a=      =>     3

1 1

1 2 3

102
( )

5 4 5 10

m
T m g

m m m
=

+ +
     =>     1 3

1

1 2 3

4
( )
4 5 10

m m
T g

m m m
=

+ +
 

 

3 2 3m g T m a− =      =>     2 3 3T m g m a= −      =>     2 3( )T m g a= −  

 

3
2 3

1 2 3

10
( )
4 5 10

m
T m g g

m m m

 
= − 

+ + 
     =>     3

2 3

1 2 3

10
1

4 5 10

m
T m g

m m m

 
= − 

+ + 
 

 

1 2 3 3
2 3

1 2 3 1 2 3

4 5 10 10

4 5 10 4 5 10

m m m m
T m g

m m m m m m

 + +
= − 

+ + + + 
 

 

1 2
2 3

1 2 3

4 5

4 5 10

m m
T m g

m m m

 +
=  

+ + 
 

 

1 2 3
2

1 2 3

(4 5 )

4 5 10

m m m
T g

m m m

 +
=  

+ + 
 

 
We can do a check for the case where the sphere mass is zero as we did this problem in the 
previous section. We got the following. 
 

2

2

m
a g

m M
=

+
           

2

mM
T g

m M
=

+
 

 
To relate to our more general problem here:  
 

3

1 2 3

10
( )
4 5 10

m
a g

m m m
=

+ +
          1 2 3

2

1 2 3

(4 5 )

4 5 10

m m m
T g

m m m

 +
=  

+ + 
 

 

we take 1 0m = , 2m M= , and 3m m= . 

 

3

1 2 3

10 10 10 2
( ) ( ) ( )
4 5 10 4 0 5 10 10 5 2

m m m m
a g g g g

m m m M m m M m M
= → = =

+ +  + + + +
 

 

1 2 3
2

1 2 3

(4 5 ) (4 0 5 ) 5

4 5 10 4 0 5 10 5 10 2 2

m m m M m Mm Mm mM
T g g g g g

m m m M m M m M m m M

 +  +   
= → = = =     + +  + + + + +    

 

 
Everything checks out and there is no tension 1: 
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1 3
1

1 2 3

4 4 0
( ) ( ) 0
4 5 10 4 0 5 10

m m m
T g g

m m m M m

 
= → =

+ +  + +
 

 
(c) The Velocity. 
 

1 1 2 2K U K U+ = +  

 

2 2 2

3 1 1 2 2 3

1 1 1
0 0

2 2 2
m gh I I m v + = + + +  

 

2 2 2 2 2

3 1 1 2 2 1 3

1 2 1 1 1
( ) ( )

2 5 2 2 2
m gh mr m r m v = + +  

 

2 2 2 2 2

3 1 2 2 3

1 2

1 2 1 1 1
( )( ) ( )( )

2 5 2 2 2

v v
m gh mr m r m v

r r
= + +  

 

2 2 2

3 2 3

1 1 1

5 4 2
m gh mv m v m v= + +  

 
2 2 2

3 1 2 320 4 5 10m gh m v m v m v= + +  

 
2

3 1 2 320 (4 5 10 )m gh m m m v= + +  

 

3

1 2 3

20
( )
4 5 10

m
v gh

m m m
=

+ +
 

 

We can check this formula against 
4

2

mgh
v

m M
=

+
 with 1 0m = , 2m M= , and 3m m= . 

 

3

1 2 3

20 20 20 4
( ) ( ) ( )
4 5 10 4 0 5 10 10 5 2

m m m mgh
v gh gh gh

m m m M m m M m M
= → = =

+ +  + + + +
 

 
Our original problem in this section is frequently given where the sphere is replaced with a 
spherical shell. Can you trace through the problem with 
 

2

1 1 1

2

5
I m r=  replaced with 2

1 1 1

2

3
I m r= ? 

 
M6. The Atwood Machine. The Atwood machine is names after its inventor George Atwood 
(1745-1807), a mathematician, who used his invention to study Newton’s Law of motion. We will 
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check out his machine in this section. In fact, we have already looked at such an arrangement. 
Below is the figure we encountered in Chapter E. 
 

We found the following results. 
 

2 1

1 2

( )
m m

a g
m m

−
=

+
 

 

1 2

1 2

2
( )

m m
T g

m m
=

+
 

 
These formulas apply to the Atwood machine with a massless pulley or a pulley over which the 
rope slides with no friction.  

The Atwood machine is shown in the left figure. 
 
The pulley is a disk. The mass is M  and the radius is R . 
 
Therefore, the moment of inertia is 
 

21

2
I MR= . 

 
Atwood’s intent was to use heavy weights so that he had 
a massless pulley. In that sense, we already have done the 
problem for the Atwood machine. 

 
However, a real Atwood machine will have some 
rotational inertia in the pulley. 
 
We proceed to analyze a realistic Atwood machine where 
the pulley has rotational inertia and the friction between 
the rope and pulley causes the pulley to rotate. 
 

Find (a) the acceleration and (b) the tensions in the rope. 
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We have three objects. There will be three equations. We 

choose the positive direction to be mass 2m  moving 

down. Consistent with this choice, positive rotation for 

the pulley is clockwise and positive for 1m  is moving 

upward. 

1 1F m a=    =>   1 1 1T m g m a− =  

 

I =    =>   2

2 1

1

2

a
T R T R MR

R
− =  

 

2 2F m a=    =>   2 2 2m g T m a− =  

 
The three equations, with slight tidying up, are 
 

1 1 1T m g m a− = , 

 

2 1

1

2
T T Ma− = , 

 

2 2 2m g T m a− = . 

(a) The Acceleration. We add the equations, taking advantage of Newton’s Third Law of Action 
and Reaction. 
 

1 1 1T m g m a− =  

2 1

1

2
T T Ma− =  

2 2 2m g T m a− =  

 
The result of adding the three equations is 

 

2 1 1 2

1

2
m g m g m a Ma m a− = + + . 

 

2 1 1 2

1
( ) ( )

2
m m g m M m a− = + +  

 

2 1

1 2

1

2

m m
a g

m M m

−
=

+ +
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2 1

1 2

2( )

2( )

m m
a g

m m M

−
=

+ +
 

 
(b) The Tensions. 
 

1 1 1T m g m a− =      =>     1 1 1T m a m g= +      =>     1 1( )T m a g= +  

 

2 1

1 2

2( )

2( )

m m
a g g g

m m M

−
+ = +

+ +
 

 

2 1

1 2

2( )
1

2( )

m ma g

g m m M

−+
= +

+ +
 

 

2 1 1 2

1 2 1 2

2( ) 2( )

2( ) 2( )

m m m m Ma g

g m m M m m M

− + ++
= +

+ + + +
 

  

2 1 1 2

1 2

2( ) 2( )

2( )

m m m m Ma g

g m m M

− + + ++
=

+ +
 

 

2 1 1 2

1 2

2 2 2 2

2( )

m m m m Ma g

g m m M

− + + ++
=

+ +
 

2

1 2

4

2( )

m Ma g

g m m M

++
=

+ +
     =>     2

1 2

4

2( )

m M
a g g

m m M

+
+ =

+ +
 

 

1 1( )T m a g= +      =>     1 2
1

1 2

(4 )

2( )

m m M
T g

m m M

+
=

+ +
 

 

2 2 2m g T m a− =      =>     2 2 2T m g m a= −      =>     2 2 ( )T m g a= −  

 

2 1

1 2

2( )

2( )

m m
a g

m m M

−
=

+ +
     =>     2 1

1 2

2( )

2( )

m m
g a g g

m m M

−
− = −

+ +
     =>     2 1

1 2

2( )
1

2( )

m mg a

g m m M

−−
= −

+ +
 

 

1 2 2 1

1 2 1 2

2( ) 2( )

2( ) 2( )

m m M m mg a

g m m M m m M

+ + −−
= −

+ + + +
     =>     1 2 2 1

1 2

2 2 2 2 )

2( )

m m M m mg a

g m m M

+ + − +−
=

+ +
 

 

1

1 2

4

2( )

m Mg a

g m m M

+−
=

+ +
     =>     1

1 2

4

2( )

m M
g a g

m m M

+
− =

+ +
 

 

2 2 ( )T m g a= −  
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2 1
2

1 2

(4 )

2( )

m m M
T g

m m M

+
=

+ +
 

 

Summary:         2 1

1 2

2( )

2( )

m m
a g

m m M

−
=

+ +
        1 2

1

1 2

(4 )

2( )

m m M
T g

m m M

+
=

+ +
         2 1

2

1 2

(4 )

2( )

m m M
T g

m m M

+
=

+ +
 

 

We now check if we get the expected for the massless pulley.  2 1

1 2

( )
m m

a g
m m

−
=

+
  1 2

1 2

2
( )

m m
T g

m m
=

+
 

 

We use our most general formulas with 0M = . We should also find 1 2T T= . 

 

2 1 2 1 2 1

1 2 1 2 1 2

2( ) 2( )

2( ) 2( )

m m m m m m
a g g g

m m M m m m m

− − −
= → =

+ + + +
 

 

1 2 1 2 1 2
1

1 2 1 2 1 2

(4 ) (4 ) 2

2( ) 2( )

m m M m m m m
T g g g

m m M m m m m

+
= → =

+ + + +
 

 

2 1 2 1 1 2
2

1 2 1 2 1 2

(4 ) (4 ) 2

2( ) 2( )

m m M m m m m
T g g g

m m M m m m m

+
= → =

+ + + +
 

 
M8. Pulling Mass in Table. We return to our earlier pulley and table problem, but now with 
rotational inertia for the pulley. We found in Chapter E the following solution for the massless 
pulley or rope sliding over a pulley with no friction. 
  

2

1 2

( )
m

a g
m m

=
+

 

 

1 2

1 2

( )
m m

T g
m m

=
+

 

 
The arrangement at the left includes rotational 
inertial for the pulley disk but there is no friction 
for the mass on the table. 
 
(a) Find the acceleration. 
 
(b) Find the tension in each section of the rope or 
cable. 
 
(c) Check that when pulley is massless that you 
recover the above formulas from before. 
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There are three objects to consider. 
 

1 1F m a=    =>   1 1T m a=  

 

I =    =>   2

2 1

1

2

a
T R T R MR

R
− =  

 

2 2F m a=    =>   2 2 2m g T m a− =  

 
The three equations, with slight tidying up, are 
 

 

1 1T m a= , 

2 1

1

2
T T Ma− = , 

2 2 2m g T m a− = . 

 
(a) The Acceleration. Add the equations. 

2 1 2

1

2
m g m a Ma m a= + +  

2 1 2

1
( )

2
m g m M m a= + +      =>     2

1 2

1

2

m
a g

m M m

=

+ +

     =>     2

1 2

2

2 2

m
a g

m M m
=

+ +
 

 

2

1 2

2

2( )

m
a g

m m M
=

+ +
 

 
(b) The Tensions. 

1 1T m a=  

 

1 2
1

1 2

2

2( )

m m
T g

m m M
=

+ +
 

 

2 2 2m g T m a− =      =>     2 2 2m g m a T− =      =>     2 2 ( )T m g a= −  

 

2

1 2

2

2( )

m
g a g g

m m M
− = −

+ +
     =>     2

1 2

2
1

2( )

mg a

g m m M

−
= −

+ +
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1 2 2

1 2 1 2

2( ) 2

2( ) 2( )

m m M mg a

g m m M m m M

+ +−
= −

+ + + +
 

 

1 2 2

1 2

2 2 2

2( )

m m M mg a

g m m M

+ + −−
=

+ +
     =>     1

1 2

2

2( )

m Mg a

g m m M

+−
=

+ +
     =>     1

1 2

2

2( )

m M
g a g

m m M

+
− =

+ +
 

 

     2 2 ( )T m g a= −      =>     1 2
2

1 2

(2 )

2( )

m M m
T g

m m M

+
=

+ +
 

 
(c) Correspondence Formulas Reducing to Frictionless Pulley. Take 0M =  and see if we get  

 

2

1 2

( )
m

a g
m m

=
+

     and     1 2

1 2

( )
m m

T g
m m

=
+

. 

 

2 2 2

1 2 1 2 1 2

2 2
( )

2( ) 2( )

m m m
a g g g

m m M m m m m
= → =

+ + + +
 

 

1 2 1 2 1 2
1

1 2 1 2 1 2

2 2

2( ) 2( )

m m m m m m
T g g g

m m M m m m m
= → =

+ + + +
 

 

1 2 1 2 1 2
2

1 2 1 2 1 2

(2 ) 2

2( ) 2( )

m M m m m m m
T g g g

m m M m m m m

+
= → =

+ + + +
 

 
What about adding friction for the mass on the table. In Chapter E we found for a massless pulley 
the following formulas. 

 
 

2 1

1 2

( )km m
a g

m m

−
=

+
 

 
 

1 2

1 2

( )(1 )k

m m
T g

m m
= +

+
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Our three equations are now as follows. 

 

1 1F m a=    =>   1 1 1kT m g m a− =  

 

I =    =>   2

2 1

1

2

a
T R T R MR

R
− =  

 

2 2F m a=    =>   2 2 2m g T m a− =  

 
The three equations, with slight tidying 
up the second one, are 
 

1 1 1kT m g m a− = , 

2 1

1

2
T T Ma− = , 

2 2 2m g T m a− = . 

Add the equations. 

2 1 1 2

1
( )

2
km m g m a Ma m a− = + +      =>     2 1 1 2

1
( ) ( )

2
km m g m M m a− = + +  

 

2 1

1 2

1

2

km m
a g

m M m

−
=

+ +

     =>     2 1

1 2 / 2

km m
a g

m m M

−
=

+ +
 

When 0M →  we recover the result from Chapter E above. 
 

1 1 1kT m g m a− =      =>     1 1 1kT m a m g= +      =>     1 1( )kT m a g= +  

 

2 1
1 1

1 2

( )
/ 2

k
k

m m
T m g g

m m M




−
= +

+ +
     =>     2 1

1 1

1 2

( )
/ 2

k
k

m m
T m g

m m M




−
= +

+ +
 

 

2 1 1 2
1 1

1 2 1 2

/ 2
( )

/ 2 / 2

k
k

m m m m M
T m g

m m M m m M




− + +
= +

+ + + +
 

 

2 1 1 2
1 1

1 2

/ 2
( )

/ 2

k k k km m m m M
T m g

m m M

   − + + +
=

+ +
 

 

2 2
1 1

1 2

/ 2
( )

/ 2

k km m M
T m g

m m M

 + +
=

+ +
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2
1 1

1 2

(1 ) / 2

/ 2

k km M
T m g

m m M

  + +
=  

+ + 
 

 

2 2 2m g T m a− =      =>     2 2 2T m g m a= −      =>     2 2 ( )T m g a= −  

 

2 2 ( )T m g a= −  

 

2 1
2 2

1 2

( )
/ 2

km m
T m g g

m m M

−
= −

+ +
     =>     2 1

2 2

1 2

(1 )
/ 2

km m
T m g

m m M

−
= −

+ +
 

 

2 11 2
2 2

1 2 1 2

/ 2
( )

/ 2 / 2

km mm m M
T m g

m m M m m M

−+ +
= −

+ + + +
 

 

1 2 2 1
2 2

1 2

/ 2
( )

/ 2

km m M m m
T m g

m m M

+ + − +
=

+ +
 

 

1 1
2 2

1 2

/ 2
( )

/ 2

km M m
T m g

m m M

+ +
=

+ +
 

 

1
2 2

1 2

(1 ) / 2

/ 2

km M
T m g

m m M

 + +
=  

+ + 
 

 

Do we get 1 2
1 2

1 2

( )(1 )k

m m
T T T g

m m
= = = +

+
 when 0M → ? 

 

2 2 1 2
1 1 1

1 2 1 2 1 2

(1 ) / 2 (1 )
(1 )

/ 2

k k k
k

m M m m m
T m g m g

m m M m m m m

  


   + + +
= → = +   

+ + + +   
 

 

1 1 1 2
2 2 2

1 2 1 2 1 2

(1 ) / 2 (1 )
(1 )

/ 2

k k
k

m M m m m
T m g m g

m m M m m m m

 


   + + +
= → = +   

+ + + +   
 

 
M9. Pulling Mass Up an Incline. We did the hanging mass pulling up a mass on an incline both 
with friction on the incline and a frictionless incline. But we had a massless pulley or one where 
the rope slide over the pulley with no rotation.  
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Pulling a mass up an incline with a 
massless pulley led to these 
equations derived in Chapter E. 
 

2 1

1 2

[ (sin cos )]km m
a g

m m

  − +
=

+
 

 

1 2

1 2

( )(1 sin cos )k

m m
T g

m m
  = + +

+
 

 
 

These reduced to the first formulas we derived for a frictionless incline where 0k = . In this 

section we extend the above boxed formulas to include a disk pulley with rotational inertia. 
 

Let’s begin. 
 

1 1F m a=  =>  

 

1 1 1sinT f m g m a− − =  

 

I =    =>   2

2 1

1

2

a
T R T R MR

R
− =  

 

2 2F m a=    =>   2 2 2m g T m a− =  

 

The frictional force kf N=  and the normal force 1 cosN m g =  from the forces perpendicular 

to the incline. The frictional force is 1 cosk kf N m g  = = . It is important to stress that we are 

doing the problem for the mass going up the incline. In this situation the frictional force is done 
the incline, always opposite to your direction of motion. 
 
The three equations, with substituting the frictional force in the first equation and tidying up the 
second equation are. 

1 1 1 1cos sinkT m g m g m a  − − =  

2 1

1

2
T T Ma− =  

2 2 2m g T m a− = . 

Add the equations. 
 

2 1 1 1 2cos sin ( / 2)km g m g m g m a M a m a  − − = + +  
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2 1 1 1 2

1
cos sin ( )

2
km g m g m g m M m a  − − = + +  

 

2 1 1

1 2

cos sin
( )

1

2

km m m
a g

m M m

  − −
=

+ +

     =>     2 1

1 2

( cos sin )

/ 2

km m
a g

m m M

   − +
=  

+ + 
 

 

2 1

1 2

(sin cos )

/ 2

km m
a g

m m M

   − +
=  

+ + 
 

 

1 1 1 1cos sinkT m g m g m a  − − =      =>     1 1 1 1cos sinkT m a m g m g  = + +  

 

1 1( cos sin )kT m a g g  = + +      =>     1 1( sin cos )kT m a g g  = + +  

 

2 1
1 1

1 2

(sin cos )
sin cos

/ 2

k
k

m m
T m g g g

m m M

  
  

 − +
= + + 

+ + 
 

 

2 1
1 1

1 2

(sin cos )
(sin cos )

/ 2

k
k

m m
T m g

m m M

  
  

 − +
= + + 

+ + 
 

 

2 1 1 2
1 1

1 2 1 2

(sin cos ) / 2
(sin cos )

/ 2 / 2

k
k

m m m m M
T m g

m m M m m M

  
  

 − + + +
= + + 

+ + + + 
 

 

2 1 1 2
1 1

1 2

(sin cos ) (sin cos ) (sin cos ) (sin cos ) / 2

/ 2

k k k km m m m M
T m g

m m M

            − + + + + + + +
=  

+ + 
 

 

2 2
1 1

1 2

(sin cos ) (sin cos ) / 2

/ 2

k km m M
T m g

m m M

      + + + +
=  

+ + 
 

 

2 2
1 1

1 2

( / 2)(sin cos )

/ 2

km m M
T m g

m m M

   + + +
=  

+ + 
 

 

2 2 2m g T m a− =     =>    2 2 2m g m a T= +     =>    2 2 2T m g m a= −     =>    2 2 ( )T m g a= −  

 

2 1
2 2

1 2

(sin cos )

/ 2

km m
T m g g

m m M

   − +
= − 

+ + 
     =>     2 1

2 2

1 2

(sin cos )
1

/ 2

km m
T m g

m m M

   − +
= − 

+ + 
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2 11 2
2 2

1 2 1 2

(sin cos )/ 2

/ 2 / 2

km mm m M
T m g

m m M m m M

   − ++ +
= − 

+ + + + 
 

 

1 2 2 1
2 2

1 2

/ 2 (sin cos )

/ 2

km m M m m
T m g

m m M

   + + − + +
=  

+ + 
 

 

1 1
2 2

1 2

/ 2 (sin cos )

/ 2

km M m
T m g

m m M

   + + +
=  

+ + 
 

 

1
2 2

1 2

(1 sin cos ) / 2

/ 2

km M
T m g

m m M

   + + +
=  

+ + 
 

 
 

Summary:     2 1

1 2

(sin cos )

/ 2

km m
a g

m m M

   − +
=  

+ + 
 

 

2 2
1 1

1 2

( / 2)(sin cos )

/ 2

km m M
T m g

m m M

   + + +
=  

+ + 
 

 

1
2 2

1 2

(1 sin cos ) / 2

/ 2

km M
T m g

m m M

   + + +
=  

+ + 
 

 
Let 0M →  and see if these equations reduce to  

 

2 1

1 2

[ (sin cos )]km m
a g

m m

  − +
=

+
 

 

1 2

1 2

( )(1 sin cos )k

m m
T g

m m
  = + +

+
 

 

2 1 2 1

1 2 1 2

(sin cos ) [ (sin cos )]

/ 2

k km m m m
a g g

m m M m m

      − + − +
= → 

+ + + 
 

 

2 2 2 2
1 1 1

1 2 1 2

( / 2)(sin cos ) (sin cos )

/ 2

k km m M m m
T m g m g

m m M m m

        + + + + +
= →   

+ + +   
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2 1 2
1 1

1 2 1 2

(1 (sin cos )
( )(1 sin cos )k

k

m m m
T m g g T

m m m m

  
  

 + +
→ = + + = 

+ + 
 

 

1 1
2 2 2

1 2 1 2

(1 sin cos ) / 2 (1 sin cos )

/ 2

k km M m
T m g m

m m M m m

        + + + + +
= →   

+ + +   
 

 

1 2
2

1 2

( )(1 sin cos )k

m m
T g T

m m
  =→ + + =

+
 

 
 

M10. Belt Friction. The friction between the cable and the pulley varies over the pulley. This 
variation must be present since the tensions at the extreme points of contact are not the same. 
See the figure of the Atwood machine we did earlier. 

 
 

Summary:         2 1

1 2

2( )

2( )

m m
a g

m m M

−
=

+ +
         

 

1 2
1

1 2

(4 )

2( )

m m M
T g

m m M

+
=

+ +
         2 1

2

1 2

(4 )

2( )

m m M
T g

m m M

+
=

+ +
 

 

Since 2 1m m  for our arrangement at the left, 

 

2 1T T . 

 
What minimum coefficient of static friction do we need 
between the belt and the pulley so that there is no 

slipping? For a specific case to analyze, take 1 2m M=  and 

2 5m M= . 

 

1 2
1

1 2

(4 ) 2 (4 5 )

2( ) 2(2 5 )

m m M M M M
T g g

m m M M M M

+  +
= =

+ + + +
 

 

1

2(20 1) 2(21) 2(7) 14

2(7) 1 15 5 5
T Mg Mg Mg Mg

+
= = = =

+
 

 

2 1
2

1 2

(4 ) 5 (4 2 ) 5(8 1) 5(9) 5(3) 15

2( ) 15 15 15 5 5

m m M M M M
T g g Mg Mg Mg Mg

m m M M

+  + +
= = = = = =

+ +
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A pulley with a belt is shown at the left. 

The larger tension 2T  is labeled as largerT  

and the smaller tension 1T  is labeled 

smallerT  so that when you see the formula 

we drive here months later you will not 

have to remember if 2T  is larger than 1T

. 
 

The angle swept out between smallerT  and 

largerT  is  . For the analysis, we consider 

a small angle d  and a small segment of 
belt. 
 
The belt has such a small mass compared 
to the pulley that we consider the belt 
massless. You will see shortly that we 

actually want to set the mass element to zero for another reason. 
 
We apply Newton’s Law to the belt element situated at the top of the pulley. We have an 
equation for the x-direction or tangential direction and one for the y-direction or normal axis. For 
the moment we include a nonzero mass element dm . 

 

( )cos cos ( )
2 2

x

d d
F T dT T df dm a

 
= + − − =  

 

sin ( )sin 0
2 2

y

d d
F dN T T dT

 
= − − + =  

 
Immediate simplification leads to 
 

cos ( )
2

2 sin sin 0
2 2

d
dT df dm a

d d
dN T dT



 

− =

− − =

, 

 
where I have bracketed the pair of equations to keep track of them. I learned this trick from my 
goo friend Paul Ottinger in graduate school. He went on to get his Ph.D. in plasma physics. 

 
Since df dN= , the pair can be written as 
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cos ( )
2

2 sin sin 0
2 2

d
dT dN dm a

d d
dN T dT




 

− =

− − =

 

 
Let’s take a moment an inspect the first equation, solving for  . 

 

cos ( )
2

d
dT dN dm a


− =   =>  cos ( )

2

d
dT dm a dN


− =   =>  cos ( )

2

d
dN dT dm a


 = −  

 
The dm  causes a reduction in the coefficient of friction due to the minus sign. So when we neglect 
the mass since it is small, our resulting coefficient of friction will be slightly larger. This slight 
increase is good because we want to play it safe and rather have our specification for the 
coefficient of friction a tad higher. Safety is of utmost importance in engineering. The pair of 
equations neglecting the belt mass is then 
 

cos 0
2

2 sin sin 0
2 2

d
dT dN

d d
dN T dT




 

− =

− − =

 

 
which is equivalent to 

 

cos
2

2 sin sin
2 2

d
dT dN

d d
dN T dT




 

=

= +

. 

 
Now it is time to invoke the two following important approximations in physics: 

 
cos 1     and   sin  , 

 
when   is very small and is an angle in radians. 

 
The usual way to see these relations is to reflect back in your Calculus I class where you used 
differential calculus to express cos  and sin  as power series. Such power series are called 
Maclaurin series, the basic form for the more general Taylor series: 

2 4

cos 1 ...
2! 4!

 
 = − + −    and   

3

sin ...
3!


 = − − , where   is in radians. 

 
But here is a cute geometric demonstration that will get us the first term in each. 
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When the angle   is in radians, we can write the arc length as s r= . Since 1r = , we readily find 
from the figure for small angles cos 1   and sin  . Check this approximation out for 10°. 
 

cos10 0.985 1 =   
 

sin10 0.174 =  
 

10 10 radians 0.175 sin10
180


 =  =  


 

 
And 10° is a not really a super small angle. The approximation still works! 

 
Our equation pair with the approximation is then 

 

cos
2

2 sin sin
2 2

d
dT dN

d d
dN T dT




 

=

= +

     =>     
2

2 2

dT dN

d d
dN T dT



 

=

= +
. 

 
At this point we can throw away the double differential since when we take the limit as our 
infinitesimals approach zero, a product of infinitesimals will run to zero faster. In other words, a 
differential is super small and a product of differentials can be discarded compared to a single 
differential. Our pair of equations become even simpler. 
 

dT dN

dN Td





=

=
 

 
We arrive at one equation by substituting dN Td=  into dT dN=  

 
dT Td = . 

 

This equation is a differential equation: 
dT

T
d



= . 
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We solve it by going back to our form dT Td = . 

 
We separate the variable getting T  on the left side and   on the right. 

 
The constant   can go with the  . 

 
dT

d
T

 =  

 
We now integrate both sides, referring to our figure to get the limits. 

 
larger

smaller 0

T

T

dT
d

T



 =   

 
larger

smaller 0
ln

T

T
T


=  

 

larger smallerln ln ( 0)T T  − = −  

 

larger

smaller

ln
T

T
=  

 

larger

smaller

T
e

T

=  

 

larger smallerT T e=  

 

For our pulley case under consideration  = , 1

14

5
T Mg= , and 2

15

5
T Mg= . 

 

larger

smaller

ln
T

T
 = =  

 

larger

smaller

1
ln

T

T



=  

 

2

1

1 1 (15 / 5) 1 15 0.06899
ln ln ln 0.02196 0.02

(14 / 5) 14

T Mg

T Mg


   
= = = = = =  

 
This coefficient of static friction is easy to achieve. 


