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Physics I with Calculus, Prof. Ruiz (Doc), UNC-Asheville (1978-2021), DoctorPhys on YouTube 
Chapter L. Moments of Inertia. Prerequisite: Calculus I. Corequisite: Calculus II. 
 
L0. Calculus Review. The time has come where we are going to need to use material from your 
Calculus II course, which is a corequisite. I include this review because I would like you to see how 
a physicist looks at calculus within the context of physics. Physicists are not rigorous 
mathematicians and it is important for you to take calculus with mathematicians to get a solid 
foundation. Mathematicians often clean up after physicists. An excellent example is the work of 
David Hilbert (1862-1943) and the resulting Hilbert space of quantum mechanics. In a typical intro 
physics course, there is no time for this kind of review. But our course is not typical. So it is 
included. I hope you take some time to check out this section called L0. Calculus Review. 
 

 
  
In Chapter B we saw that finding the slope is the subject of differential calculus and calculating 
area is the main ingredient in integral calculus. See the expression of these fundamental ideas 
within the context of our kinematic physics formulas in the above figure from Chapter B. 
 

https://www.youtube.com/user/doctorphys
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Another reason to include this short review of the foundations of differential and integral calculus 
is for you to have enough calculus so we can derive the moments of inertia formulas rather than 
just list them in a table. 
 
1. Differential Calculus. For differential calculus we calculate a slope – the derivative – a derived 
function. Moving to the right in the above kinematics figure gives us slope functions. 
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 Constant Function Linear Function Quadratic Function 

Function 
0( )x t x=  0 0( )x t x v t= +  2

0 0

1
( )

2
x t x v t at= + +  

Slope ( ) 0v t =  
0( )v t v=  0( )v t v at= +  

 
Refer to our kinematics figure to see that the slope of a horizontal constant line is zero. For the 
linear function we pull off the coefficient hitting the time variable. This idea is consistent with the 
linear equation from algebra: y mx b= + . The slope is given by m . Compare y mx b= +  with 

0 0( )x t x v t= + . The m  is like the 0v . For the quadratic, the 21

2
at at→ . The a  is a constant out 

in front. Therefore, the slope function for 2t  is 2t . We summarize these in the next table. 
 

 A Simple Constant 
Function 

Simplest Linear 
Function 

Simplest Quadratic 
Function 

Function 1  t  2t  
Slope 0  1  2t  

 
For our math review, we would like to think in terms of ( )y y x=  instead of ( )x x t= . The table 

then becomes the one below. 
 

 Simplest Constant 
Function 

Simplest Linear 
Function 

Simplest Quadratic 
Function 

Function 1  x  2x  
Slope 0  1  2x  

 
An important foundation in differential calculus is the general formula that gives the slope of a 
function. When you apply it to a specific function, you get the slope function, as listed in the 
above tables for a few specific cases.  
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The key idea of the slope is rise over run. It is a measure of how steep the graph is at a given 
point. The same principle applies to a path on a hike. How far up do you go when you take one 
step along the path. When you hike on flat ground, the slope is zero. See the next figure for a 
diagram of hiking up a steep hill. 
 

Courtesy David J. Raymond, Wikimedia 
License: GNU FDL 
 
The slope is illustrated at the left: 
 

rise
slope

run
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= =
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where you approach the precise result, the 
tangent, as you take 
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The new function, the derived one, is the derivative, with the following equivalent notations. 
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More details appear in the next version of the formula, one that is widespread in calculus. 
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Consult the above figure to see that 
( ) ( ) rise

run

f x x f x y

x x
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= =

 
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Another popular variation is one where you use h  for x . 

 

0

( ) ( ) ( )
lim
h

df x f x h f x
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=  

 

We know from the physics examples above that the slope function for 2x  is 2x . By way of a 
calculus review, let’s use the “master slope formula” to arrive at this result. This short calculation 

will give us confidence in the general formula. We proceed with the formula when 2( )f x x= . 

 

https://en.wikipedia.org/wiki/GNU_Free_Documentation_License
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The remarkable cancellation of the 2x  so that we can get rid of that h  in the denominator results 
in the miracle, obtaining a finite result! 

 

Important for physics applications is the slope function for the general case nx , where n = 0, 1, 
2, 3, … We will need the binomial theorem for the derivation. 
 

1 2 2 3 3( 1) ( 1)( 2)
( ) ...

1 2 1 2 3

n n n n n nn n n n n
a b a na b a b a b b− − −− − −
+ = + + + + +

  
 

 
Think of apples and bananas. You will choose n pieces of fruit since there are n factors of (a + b). 
When multiplying these factors out, think of picking the individual “a” and “b” factors as choosing 
the fruit: a for apple and b for banana. There is only one way to pick all apples, i.e., one way to 

multiply so that all the individual factors are “a” in order to get na . Therefore, the coefficient in 

front of na  is 1. Next we consider picking one banana and the rest apples. There are n ways to 

pick one banana b  and the rest (n – 1) will be apples 1na − . This choice is represented by the term 
1na b−  and we place the coefficient n in front for the n ways. 

 
For the next term you pick two bananas. Once you pick the first banana out of the n possibilities, 
there are then n – 1 ways to pick the next banana. But since the order does not matter, we divide 

by 2 and arrive at 2 2( 1)

1 2

nn n
a b−−


 for two bananas and n – 2 apples. Can you continue along with 

this analogy to check the next term and start to see the pattern? 
 
Here we go. 
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Again, we have the miraculous cancellation so that we end up with no “h” in the denominator 
and can therefore take the limit. The table below shows three results from this general formula, 
which match the few results we already know. 
 

n 0 1 2 

Function 1  x  2x  
Slope 0  1  2x  

 
What about if n is a fraction or any number for that matter? That depends if the binomial theorem 
works in such cases. I asked my math teacher this question in college when I stopped on a campus 
sidewalk and saw him sitting on a bench. He said yes! Newton contributed to the generalization 
of the binomial theorem c. 1665. We will not dwell on the expanded power of the binomial 
theorem. But I will point out that when n = 1/2, we have the square root of x and we get: 
 

1/2 1/2 1 11 1 1 1

2 2 2

d x d
x x x

dx dx x

− −= = = = . 

 
2. Integral Calculus. We noticed with our kinematic formulas that moving to the right in our chart 
gives the slope function, the derivative. Moving left gets you the area, a sort of antiderivative. 
 

Courtesy Kabel, Wikimedia 
GNU Free Documentation 
 
The thin vertical red strip 
has approximate area 
 

( )A f x h   , 

 
which gets better and 
better as the strip is taken 
to be thinner and thinner. 
 

https://en.wikipedia.org/wiki/GNU_Free_Documentation_License
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Since ( ) ( )A A x h A x = + − , we can write for the small strip, 

 
( ) ( ) ( )A A x h A x f x h = + −   . 

 
Comparing with our kinematics chart, the area function ( )A x  is to the left of our function ( )f x . 

 

Left Function Right Function 

( )A x  ( )f x  

Area Function Slope Function 
 
We now check to see if the right function ( )f x  is the slope function for ( )A x . Start with 

 
( ) ( ) ( )A A x h A x f x h = + − =   

 
and solve for ( )f x . 

 
( ) ( ) ( )A x h A x f x h+ −             =>          ( ) ( ) ( )f x h A x h A x  + −  
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A x h A x

f x
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+ −
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A x h A x
f x

h→

+ −
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The function ( )f x  is indeed the slope function, i.e., derivative, of the area function! 

 
This profound connection is the fundamental theorem of calculus. 

 
If you want to get the area function ( )A x  from ( )f x , start with ( )A f x h    where as we noted 

before h x=  . 
 

( )A f x x    

 
The area function is then 

( ) ( )A x A f x x     . 

 
As we let x  get smaller and smaller, approaching zero, we obtain an infinite number of strips. 
We then call x  an infinitesimal and designate it by dx . The area ( )A x  is still finite as we can 

see from its shaded portion on the above graph. The following notation means infinitesimal 
strips. 
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( ) ( )A x f x dx=   

 
The area is called an integral and the function ( )f x  is called the integrand. We will flip the 

equation to write the integral on the left side. 
 

( ) ( )f x dx A x=  

 
Courtesy 4C, Wikimedia. License GFDL 
 
But for a specific area S  we need to ask from 
where to where? Say we want the area from 
x a=  to x b= . Then we need to subtract the 
total area up to x a=  from the total area up 
to x b= . 
 

( ) ( )S A b A a= −  

 
The following notation gets us the desired 
area. 
 

( ) ( ) ( ) ( )
b b

aa
f x dx A x A b A a= = −  

 
If you write the non-specific form, you should include an overall constant. See the table below. 
The non-specific forms is called an indefinite integral; the specific form is called a definite integral. 
 

Left Function Right Function 

( ) ( )f x dx A x const= +  ( )
( ) [ ( ) ]

d dA x
f x A x const

dx dx
= + =  

Area Function Slope Function 

 

Remember the constants 0x  and 0v  that arose when we went from right function to left function 

two times?  
 
Here is the slope table again with a couple of more entries. 
 

n 0 1 2 3 4 

Function 1  x  2x  3x  4x  
Slope 0  1  2x  23x  34x  

 
Using the rule that the area function is the reverse of the slope, we can make a similar area table 
being careful to add a constant in each case. 

https://en.wikipedia.org/wiki/GNU_Free_Documentation_License
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n 0 1 2 3 4 
Function 1  x  2x  3x  4x  

Area x c+  2

2

x
c+  

3

3

x
c+  

4

4

x
c+  

5

5

x
c+  

 
Summary. 
 

Derivative 1n nx nx −→  1
n

ndx
nx

dx

−=  

Integral 1

1

n
n x

x const
n

+

→ +
+

 
1

1

n
n x

x dx const
n

+

= +
+  

 
L1. Moment of Inertia. Now we continue with physics. But as you will see, most of this chapter 
is integral calculus. 

 
We know from the last chapter that the moment of inertia is given by the 
formula 2I mr= . We arrived at this result from considering kinetic energy. 
 

2 2 2 2 2 2 21 1 1 1 1
( )

2 2 2 2 2
K mv m r m r mr I   = = = = =    =>   2I mr=  

 
 
We have our first example. The moment of inertia 
for a mass a distance r from the axis of rotation is 
 

2I mr= . 
 

Let’s look at it from the point of view of applying a 
torque. I had to apply some torque in order to get 
that mass twirling about my head. 
 

Fr I = =  
 

mar I = =  
 

mar
I


=      =>     

( )m r r
I




=      =>     2I mr=  

 
We arrive at the same result. For multiple point masses we sum over the individual moments of 
inertia. 

2

i i i

i i

I I m r= =   
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Each im  can be written as im  when part of a continuous structure we are breaking into pieces. 

 
2

i i

i

I r m=   

 
What about a continuous distribution of matter? That is when we use calculus. 
 

2I r dm=   

 
Here is the doctorphys rule to go from a discrete sum to an integral, which is continuous. 
 
 1. Rip off the “i” indexes. 
 2. Replace m  with dm  (or whatever the delta variable is such as x dx → ). 

 3. Change the summation sign   into a snake  , i.e., the integral sign. 

 
Which of the two cases below represents a greater rotational inertia? For which axis is the 
moment of inertia greater? 
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L2. Two Powerful Theorems. In this section we develop two powerful theorems that will enable 
us to determine many moments of inertia quickly. These principles are known as the parallel axis 
theorem and the perpendicular axis theorem. 

 
1. The Parallel Axis Theorem. In the figure, we have placed 
the axis somewhere away from the center of mass. We 
need to sum all the contributions of mass elements 
relative to this displaced axis. 
 

2

i i

i

I m r=  

 

We take each im  to be a chunk with the same small mass. 

The distance from the axis to each little mass element is 
given by 

2 2 2( ) ( )i i ir x a y b= − + − . 

 
Note that the measurements for x and y are referenced to the center of mass. 

 
2 2[( ) ( ) ]i i i

i

I m x a y b= − + −  

 
2 2 2 2[( 2 ) ( 2 )]i i i i i

i

I m x ax a y by b= − + + − +  

 
2 2 2 22 2i i i i i i i i i i

i i i i i i

I m x a m x a m m y b m y b m= − + + − +       

 
The following two terms are zero as the measurements are from the center of mass: 

 

0i i

i

m x =           and          0i i

i

m y = . 

We are left with 
 

2 2 2 2

i i i i i i

i i i i

I m x a m m y b m= + + +    , 

 
2 2 2 2

i i i i

i i

I m x Ma m y Mb= + + +  , 

 
2 2 2 2( ) ( )i i i

i

I m x y M a b= + + +  
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2

cmI I Md= +  

In words, the parallel axis theorem states that the moment of inertia about an arbitrary point is 
equal to the sum of the moment of inertia about the center of mass plus the mass times the 
square of the distance to the arbitrary axis from the center of mass axis. 
 
2. The Perpendicular Axis Theorem. This theorem is easier to derive. 

 
We start with the moment of inertia about 
the z-axis, 
 

2

z i i

i

I m r=  

and note that 
 

2 2 2

i i ir x y= + . 

 
Substituting this equation into the first gives 

 
 

2 2 2( )z i i i i i

i i

I m r m x y= = +  . 

 
2 2

z i i i i

i i

I m x m y= +   

 

The first term 
2

i i y

i

m x I=  since distances ix  are from the y-axis. 

 

The second term is 
2

i i x

i

m y I=  since distances iy   are from the x-axis. 

 

z x yI I I= +  

 
In words, the perpendicular axis theorem states that the moment of inertia about one axis is 
equal to the sum of the moments of inertia about the other two axes. We made no mention of 
the center of mass for this theorem. Therefore, the z-axis can be placed anywhere. 
 
L3. The Moment of Inertia of a Hoop. The hoop has been known for ages. In the photo below 
you find a specific hoop called the hula hoop. It came out when I was a boy, in the year 1958 and 
everyone went wild. This plastic toy version of the hoop is still very popular. 
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Courtesy Quinn Dombrowski 
flickr, Attribution-ShareAlike 
 
1. Hoop About Center of 
Mass. Here we need to 
imagine some very thin 
massless spokes that can 
connect the rim to the axis. 

Let our hoop have mass M  

and radius R . Since all the 
mass elements that make up 
the hoop are the same 

distance R  from the center, 
we have 
 

2 2

cm i i i

i i

I m r m R= =   

 
2

cm i

i

I R m=   

 
2

cmI R M=      =>     
2

cmI MR=  

 

This result is the same as that for a small single mass a distance R  from the axis. The twirling 
mass example we first did and the hula loop give the same result if the masses are the same. 

 
2. Hoop About the Edge. What is the moment of inertia of the hoop about its edge?  

 
Courtesy North Charleston 
flickr, Attribution-ShareAlike 
 
We can use the parallel axis 
to shift the axis from the 
center of mass to the edge. 
 

2

cmI I Md= +  

 
2 2

edgeI MR MR= +  

 
22edgeI MR=  

 

https://creativecommons.org/licenses/by-sa/2.0/deed.en
https://creativecommons.org/licenses/by-sa/2.0/deed.en
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Courtesy Nathan Rupert flickr, License: Attribution-NonCommercial-NoDerivs 
 
The second photo is another example of the hoop about an axis at the edge of the hoop. 
 
3. The Spinning Ring. The next example is the hoop or a ring standing and undergoing a spin.  

 
Courtesy Bence Fördős, flickr 
Attribution-ShareAlike 
 
The perpendicular axis theorem 
comes in handy for this problem. 
 

z x yI I I= +  

 
The moment of inertia about the 
z-axis, defined as the axis from 
which all the material is at a 

distance R  is simply 
 

2

zI MR= . 

https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/fordos/
https://creativecommons.org/licenses/by-sa/2.0/deed.en
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The moments of inertia about the two perpendicular axes are equal to each other due to 

symmetry. Call each of these I . Then, 
 

2z x yI I I I= + = . 

 

But 
2

zI MR= . Therefore 

 
2 2MR I=  

 
The moment of inertia for the spinning ring in the figure is then give as below. 

 

21

2
I MR=  

 
L4. Moment of Inertia for a Rod. First, we consider the moment of inertia for a rod about its end 

as illustrated in the figure below. We 
start with the moment of inertia 
formula.  
 

2I r dm=   

 
It is assumed that the rod has uniform 
density. We would like to introduce the 

linear density 
M

L
 = . Then, the small 

 
dm dr= . 

 

The integral we need to do is 2 2 2

0 0

L L

I r dm r dr r dr = = =   . 

 

3 3 3 3 3
2

0 0

0

3 3 3 3 3

LL
r L L M L

I r dr
L

   
 

= = = − = = 
 

      =>     21

3
I ML=  

 
What about the center, i.e., the center of mass? The moment of inertia of the center of mass 
appears in our parallel axis equation below as the unknown. We are / 2d L=  from the center. 
 

2

end cmI I Md= +  
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2 21
( )

3 2
cm

L
ML I M= +  

 

2 21 1

3 4
cmI ML ML= −  

 

21 1
( )
3 4

cmI ML= −  

 

24 3
( )

12
cmI ML

−
=  

 

21
( )
12

cmI ML=  

 

21

12
cmI ML=  

 
A baton is twirled at its center and is approximately a rod. 

Baton Twirlers Courtesy Brian Leon, flickr 
License: Attribution-NonCommercial-NoDerivs 

 
 
 
 

  

https://creativecommons.org/licenses/by-nc-nd/2.0/
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L5. The Moment of Inertia for a Disk. 
1. About the Center of Mass. For the 
continuous uniform disk, we use 

 
2I r dm=  . 

 
It is convenient to define the areal density 

 

2

M

R



= . 

 
Then the mass at a distance r  from the axis is 
the mass in the ribbon with circumference 2 r  
and thickness dr . The mass in this ribbon is 
 

(2 )dm dA rdr  = = , giving 

 
2 2I r rdr=  , 

 

We need to integrate from 0r =  to r R=  in order to sum up all the ribbon contributions. 
 

4 4 4
2 3

0 0
0

0
2 2 2 2 ( )

4 4 4

R
R R r R

I r rdr r dr   = = = = −   

 
4 4

2
4 2

R R
I  = =  

 
4

2 2

M R
I

R



=  

 
2

2

M R
I 


=  

 

21

2
I MR=  
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2. About the Edge.  
 
Courtesy vinylmeister, flickr 
Led Zeppelin II Vinyl Record 
Attribution-NonCommercial 
 
Drill a small hole near the top 
edge of the vinyl record at the 
left. Then place this top hole 
over a nail in a wall so that the 
nail is the axis about which the 
disk will rotate back and forth. 
 
The moment of inertia of the 
disk about this edge is easily 
obtained from the parallel axis 

theorem 
2

cmI I Md= + . 

2 2 2 21 1

2 2
edgeI MR Md MR MR= + = +      =>     23

2
edgeI MR=  

 
3. The Spinning Coin. 

Courtesy Sergio Boscaino 
flickr, License: 
Attribution 2.0 Generic 
 
The moment of inertia for 
the horizontal disk about a 
vertical z-axis through the 
center of mass was found 
above in our first calculation 
for this section, 
 

21

2
cm zI I MR= =  

 
From the perpendicular axis 
theorem, 

 

z x yI I I= + . 

https://creativecommons.org/licenses/by-nc/2.0/
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We want either xI  or yI . But these two moments of inertia 

are equal due to the symmetry. Refer to the figure at the 
left. Therefore, our answer for the spinning coin is 
 

21 1 1
( )

2 2 2
x y zI I I MR= = =  

 

21 1

2 4
x y zI I I MR= = =  

 
 
L6. Moment of Inertia for a Cylinder. 
 
1. About the Axis Through the Long Center. The integration for the moment of inertia about the 
x-axis is essentially the same as that for the disk. The answer is 

  

21

2
xI MR=  

 
2. About the Axis Through the Short Center. The 
tough case is the axis below, i.e., about the y-axis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

We definitely do not want to try to integrate this one 
from scratch. Instead, we will first break up the 
cylinder into thin disks. Then we will use the parallel 

axis theorem to obtain its contribution to the moment of inertia. See the yellow slice in each of 
the figures below. For a vertical slice at the origin (see the left figure below), 
 

21
( )

4
ydI dm R= . 
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We shift this slice to the right using the parallel axis theorem. 
 

2 21
( ) ( )

4
dI dm R dm x= +  

 

Then we use 
2dm R dx=  where the density 

2

M

R L



= . Remember that the length of our 

cylinder is L  and the total volume of our cylinder is 2R L . We are almost ready for the 
integration. 
 

2 21
( ) ( )

4
dI dm R dm x= +      =>     

2
2( )

4

R
dI x dm= +      =>     

2
2 2( )

4

R
dI x R dx= +  

 
We integrate from -L/2 to L/2 or double the integral from 0 to L/2. The integral is  
 

2
/2

2 2

0
2 ( )

4

L R
I x R dx= +  with 

2

M

R L



= . 

 

2
/2

2 2

0
2 ( )

4

L R
I R x dx= +      =>     

/2
2 3

2

0

2 ( )
4 3

L

R x
I R x= +      =>     

2 3
2 1

2 ( )
4 2 3 8

R L L
I R= +  

 
2 3

2

2

1
2 ( )

4 2 3 8

M R L L
I R

R L



= +      =>     

2 31
( )

4 3 4

M R L
I L

L
= +  

 

2 21 1

4 12
I MR ML= +  
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3. About the Edge. We can arrive at this result in two ways. 
 
Method 1. Integration. We redo the previous integral without the 2 in front and go from x = 0 to 
x = L. 

2
2 2

0
( )

4

L R
I x R dx= +  with 

2

M

R L



= . 

 

2
2 2

0
( )

4

L R
I R x dx= +      =>     

2 3
2

0

( )
4 3

L

R x
I R x= +      =>     

2
2 31
( )

4 3

R
I R L L= +  

 
2

2 3

2

1
( )

4 3

M R
I R L L

R L



= +      =>     

2
31

( )
4 3

M R
I L L

L
= +      =>     2 21 1

4 3
I MR ML= +  

 
Method 2. Parallel Axis Theorem.  
 

2 2 2 2 2 21 1 1 1 1
( ) ( ) ( )
4 12 2 4 12 4

cm

L
I I Md MR ML M MR ML= + = + + = + +  

 

2 2 2 2 2 21 1 3 1 4 1 1
( ) ( )

4 12 4 12 4 3
I MR ML MR ML MR ML

+
= + = + = +  

 
A summary of all three cases is below. 
 

 
Note the combination of disk and rod behavior! 

 
Take the radius to be small and negligible and you have the results for the rod! 

If the length is small an negligible, you have the results for the disk. 
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L7. Hypnosis. This problem involves finding the moment of inertia for a compound system. 
 
Courtesy geralt 
pixabay.com 
License: Free 
 
A chain is connected to a watch 
and the watch swings back and 
forth in the first figure. 
 
In the lower figure, a rod is 
connected to a disk. 
 
What is the moment of inertia 
about the pivot point? 
 

 
Courtesy Joshua Kenney, flickr 
License: Attribution 2.0 Generic 
 
We will model these examples 
with a rod and a disk connected 
as shown below. 

 
The rod connects to top of the disk. The moment of inertia about the 
top pivot point is equal to the sum of the moments of inertia for the 
rod and disk. 

rod diskI I I= +  

 
The rod is swinging by its end, while the center of mass for the disk 
is displaced from the pivot by L R+ . From the last section, we know 
the moment of inertia for a rod swinging by its end. But I will assume 
we do not know it and work from the center of mass using the 

https://pixabay.com/photos/hypnosis-clock-pocket-watch-4041584/
https://creativecommons.org/licenses/by/2.0/deed.en
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parallel axis theorem. Center of mass moments of inertia are easily found in tables. 
 

2 2 2 2 2 2 21 1 1 1 3 4 1
( ) ( ) ( )

12 2 12 4 12 12 3
rod cm

L
I I md mL m mL mL mL mL

+
= + = + = + = = =  

 

2 2 21
( )

2
disk cmI I Md MR M L R= + = + +  

 

2 2 21 1
( )

3 2
rod diskI I I mL MR M L R= + = + + +  

 

Find I  in terms of M  and R  when 
4

M
m =  and 2L R= . 

 

Start with 2 2 21 1
( )

3 2
I mL MR M L R= + + + . 

 

2 2 21 1
(2 ) (2 )

3 4 2

M
I R MR M R R= + + +  

 

2 2 2 2 21 1
(4 4 )

3 2
I MR MR M R R R= + + + +  

 

21 1
( 4 4 1)
3 2

I MR= + + + +  

 

22 3
( 9)

6
I MR

+
= +  

 

25
( 9)
6

I MR= +  

 

25 54
( )

6
I MR

+
=  

 

259

6
I MR=  

 
Later in our course we will learn how to use dynamics in order to calculate the time it will take 
for objects to swing back and forth like a pendulum. 
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L8. The Moment of Inertia for a Solid Sphere. Next is the uniform solid sphere. See the figure for 
the parameters. 
 
1. About the Center of Mass. 
 

We build up the sphere from the 
disks for which we know the 
answer. 
 

21

2
disk diskI MR=  

 
See the thin disk of radius r  in the 
figure. The moment of inertia 
about the z-axis for this thin disk is 
 

21

2
dI r dm= . 

 
It is convenient to introduce a 
volume mass density using the 
total mass of the sphere M  and 
the volume of the sphere 

34

3
V R= . 

 

3 3

3

4 / 3 4

M M M

V R R


 
= = = . 

 
The contribution that the thin disk makes to the moment of inertia is 

 

2 21 1

2 2
dI r dm r dV= = , 

 

where 2dV r dz=  is the volume of the thin plate. 
 

2 2 2 2 41 1 1 1
( ) ( )

2 2 2 2
dI r dm r dV r r dz r dz   = = = =  

 

Before we integrate, we need to express r  in terms of z  using 2 2 2R z r= + . 
 

Then 2 2 2r R z= −  and 4 2 2 2 4 2 2 4( ) 2r R z R R z z= − = − + , giving 
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4 4 2 2 41 1
( 2 )

2 2
dI r dz R R z z dz = = − + . 

 
Now we are ready to integrate. We can integrate from z R= −  to z R= +  or, since the northern 
and southern hemispheres contribute equally, we can double the result from 0z =  to z R= + . 
 

4 2 2 4

0

1
2 ( 2 )

2

R

I R R z z dz= − +  

 
4 2 2 4

0
( 2 )

R

I R R z z dz= − +  

 

4 2 2 4

0 0 0
2

R R R

I R dz R z dz z dz  = − +
      

 

4 2 2 4

0 0 0
2

R R R

I R dz R z dz z dz  = − +
      

 

3 5
4 2

0
0 0

2
3 5

R R
R z z

I R z R
 

= − + 
  

 

 

5 5 52 1

3 5
I R R R

 
= − + 

 
 

 

5 2 1
(1 )

3 5
I R= − +  

 

5 15 10 3
( )

15
I R

− +
=  

 

5 8
( )
15

I R=  

 

Now enter the density 
34

3

M M

RV



= = . 

5

3

8
( )

4 15

3

M
I R

R





=  
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23 8
( )

4 15
I MR=  

 

22

5
I MR=  

 
Note how the dimensions check out. 

 

 
Bowling. The solid bowling ball rotates about its central axis as it rolls. 

Courtesy Jim Pennucci, flickr, License: Attribution 2.0 Generic 
 

Let’s find the kinetic energy of a rolling bowling ball using our 22

5
I MR= . 

 

2 2 2 2 2 2 2 2 2 21 1 1 1 2 1 1 2 1 7 7
( )

2 2 2 2 5 2 2 5 2 5 10

v
K Mv I Mv MR Mv MR Mv Mv

R
 = + = + = + = =  

 

27

10
K Mv=  

https://creativecommons.org/licenses/by/2.0/deed.en
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2. Solid Sphere Displaced from the Center of Mass. The solid sphere of mass M  and radius R  
is now displaced so that the center of the sphere is at a distance from the pivot equal to the 
radius R  plus the length L  of the wire attached to it. For this problem, you can neglect the 
weight of the wire compared to the massive solid sphere. The length L  is measured for this 
problem from the top of the solid sphere to the pivot point at the ceiling. (i) What is the moment 
of inertia? (ii) What is the moment of inertia for the special case 0L = ? The length of the 
pendulum as we would define it in physics is given by the length L R+ . 

 

 
Courtesy Phil Roman, flickr, License: Attribution-noncommercial-NoDerivs 

The Franklin Institute, a Science Museum in Philadelphia, Pennsylvania, USA 
 

(i) Use the parallel axis theorem. 
 

2

cmI I Md= +      =>     
2 22

( )
5

I MR M L R= + +  

(ii) For 0L = , 
 

2 2 2 2 2 22 2 2 7
( ) (0 ) ( 1)

5 5 5 5
I MR M L R MR M R MR MR= + + → + + = + =  

 

27

5
I MR=  

https://creativecommons.org/licenses/by-nc-nd/2.0/
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L9. The Moment of Inertia for a Spherical Shell. 
 
1. About the Center of Mass. We build up the shell from the ribbons where each mass element 
is a distance r  from the z-axis. 

 
2

ribbon ribbondI r dm=  

 
See the thin ribbon of radius r  
in the figure. The mass for this 
thin disk is 
 

dm dA= , 
 

where   is the surface density 
and dA  is the area element. 
The density can be taken as a 
surface density since the shell 
is very thin. This surface 

density is 
24

M

R



= , where 

24 R  is the total surface area 

sphereA  of the spherical shell. 

Here is how you can quickly 
arrive at this total surface area 
for a sphere. 
 

34

3
sphereV R=   =>  24

(3 )
3

spheredV R dR=   =>  24sphere spheredV R dR A dR= =   =>  24sphereA R=  

 
Summary of our results so far: 

 

2dI r dm= ,     dm dA= ,     
24

M

R



= . 

 
By the way, my preference is to use the symbol   for linear density (lines),   for surface density 
(areas), and   for solids (volumes). We need the area element of the ribbon: (2 )( )dA r Rd = . 

Putting it all together, 
 

2 2 2 3(2 )( ) 2dI r dm r dA r r Rd r Rd     = = = = , 

 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

leaving the density as   for now to reduce on writing things out. We need to decide on an 
integration variable and get everything in terms of that variable. I would like to use the angle 
variable  . So we substitute sinr R = . 
 

3 32 2 ( sin )dI r Rd R Rd    = =  

 
3 32 (sin )dI R Rd  =  

 
4 32 sindI R d  =  

 
We can substitute in for the density now, 
 

4 3

2
2 sin

4

M
dI R d

R
  


= , 

 
2

3sin
2

MR
dI d = . 

 
We are ready for the integral, where we can integrate from 0 =  to  = . But since the 
northern hemisphere will contribute equally as the southern hemisphere due to the symmetry, 

we can do twice the integration from 0 =  to 
2


 = . 

 
2

/2
3

0
2 sin

2

MR
I d



 =   

 
/2

2 3

0
sinI MR d



 =   

 

Now it is time for some integration technique or tricks to find 
/2

3

0
sinsI d



 =  . 

 
/2 /2

3 2

0 0
sin sin sinsI d d

 

    = =   

 
/2

2

0
(1 cos )sinsI d



  = −  

 
Let cosu = .  Then, sindu d = − , where as 

 

0
2


→ → , for the u-variable, 1 0u→ → . 
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Transforming to the new variable u, 
 

0
2

1
(1 )( )sI u du= − − . 

 
Now switch the integration limits, introducing a minus sign. 

 

0
2

1
(1 )( )sI u du= − −      =>     

1
2

0
(1 )sI u du= −      =>     

1
3

0

1 2
( ) 1

3 3 3
s

u
I u= − = − =  

 

Then, 
/2

2 3 2

0
sin sI MR d MR I



 = =  leads to 

 

2 2

3
I MR=  

 

22

3
I MR=  

 
The units check out. 

 
Here is another way to get this result, along the lines of the trick we did for the volume to get the 
surface area. The volume trick is reproduced below so you can review it. 
 

34

3
sphereV R=   =>  24

(3 )
3

spheredV R dR=   =>  24sphere spheredV R dR A dR= =   =>  24sphereA R=  

 
We use our moment of inertia for the solid sphere and pull off the same trick to get the shell. 
 

22

5
sphereI MR=  

 
But we first need to flush out all the R-dependence. 

 

2 3 2 52 2 4 8
( )

5 5 3 15
sphereI MR R R R  = = =  

 
Now we are ready for the trick. 

 

5 5 48 8 8
( ) ( ) (5 )
15 15 15

spheredI d R d R R dR  = = =  
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48

3
spheredI R dR=  

 

sphere shelldI I dR=  

 

48

3
shellI R=  

 

But now we must be careful: 
2

34 4

3

sphere shell
M M

R
R




= → . 

In other words, we need to use 
24

shellM

R



→ . 

 

48

3
shellI R=      =>     4 2

2

8 2

3 4 3

shell
shell shell

M
I R M R

R



= =      =>     22

3
I MR=  

 
 

What is the kinetic energy of a rolling basketball? A basketball has air inside and serves as a good 
approximation for the shell. A rolling basketball rotates about its center as it rolls. 
 

2 2 2 2 2 2 2 2 2 21 1 1 1 2 1 1 2 1 5 5
( )

2 2 2 2 3 2 2 3 2 3 6

v
K Mv I Mv MR Mv MR Mv Mv

R
 = + = + = + = =  

 

 
 

Courtesy forever_carrie_on, flickr, License: Attribution-NonCommercial-NoDerivs 
  

https://creativecommons.org/licenses/by-nc-nd/2.0/
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2. About an Edge. The hanging disco ball below serves as an example of a spherical shell that can 
swing about its top edge, or at least close to the top. This fine ball is found in The Garden Brewery 
in Zagreb, Croatia. I believe it is the only brewery that displays a disco ball. 

 

 
Courtesy Davor Čengija, flickr, Dedicated to the Public Domain 

Disco Ball in The Garden Brewery, Zagreb, Croatia 
 

We can use the parallel axis theorem to quickly find the answer. 
 

2

cmI I Md= +  

 

2 22

3
I MR MR= +  

 

25

3
I MR=  
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L10. The Moment of Inertia for a Rectangle.  
 
1. The Door. We will find the moment of inertia for a door using two methods. 
 

Courtesy RyanIsHungry, flickr 
Attribution-NonCommercial 2.0 Generic 
 
Method 1. Integration. The integration is 
almost identical to the thin rod we did 
earlier. 
 

 
 

 

2dI x dm=         dm dA=         
M

ab
 =         dA adx=  

 

2 2 2 2 2( )
M M M

dI x dm x dA x dA x a dx x dx
ab ab b

= = = = =  

 
3 3

2

0
0

3 3

b
bM M x M b

I x dx
b b b

= = =  

 

21

3
I Mb=  

 
This result is the same as that from the rod about its end. 

 

https://creativecommons.org/licenses/by-nc/2.0/
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Method 2. Using Rods. We build the door with n rods, 
where each rod has mass m. 

1

n

k

k

I I
=

=  

We know for a rod about its end: 21

3
rodI mb= . We add 

all the moments of inertia for the rods. 
 

2 2 2

1

1 1 1
( )

3 3 3

n

k

k

I I n mb nm b Mb
=

= = = =  

 
The result is obtained super fast. It is the same as having 
one thick rod. 
 
 

2. The Hope Chest Lid. The lid opens upward. The moment of inertia has the same formula. 
 

 
Hand Crafted Hope Chest Courtesy DragonOak, flickr 

License: Attribution-NonCommercial-NoDerivs 

https://creativecommons.org/licenses/by-nc-nd/2.0/
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3. A Revolving Door Segment. 
 

Courtesy Elliott Brown, flickr 
License: Attribution 2.0 Generic 
 

 
Method 1. We know when the axis 
is at the left edge  
 

21

3
I Mb= . 

 
To get the moment of inertia about 
the center of mass, we use the 
parallel axis theorem 
 

2

cmI I Md= + , 

 

where 
2

b
d =  and 21

3
I Mb= . 

 

2

cmI I Md= +      =>     2 21
( )

3 2
cm

b
Mb I M= +      =>     2 21

( )
3 2

cm

b
I Mb M= −  

 

21 1
( )
3 4

cmI Mb= −      =>     24 3
( )

12
cmI Mb

−
=      =>     

21

12
cmI Mb=  

 
Method 2. Since the door and rod give the same results, we write down the result for the rod.  
 

21

12
cmI Mb=  

https://creativecommons.org/licenses/by/2.0/deed.en
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4. The Rotating Rectangular Table. 
 

 
Rectangular Rotatable Table Courtesy Brian Evans, flickr 

License: Attribution-NoDerivs 2.0 Generic 
 

 
The perpendicular axis theorem 
comes to the rescue. We want the 
moment of inertia about the z-axis. 
From the theorem, we have 
 

z x YI I I= +  

 

2 21 1

12 12
zI Mb Ma= +  

 

2 21 1

12 12
zI Ma Mb= +  

 
 

https://creativecommons.org/licenses/by-nd/2.0/
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2 21
( )

12
I M a b= +  

 
The dimensions are correct and the symmetry in “a” and “b” is an additional check. 

 
We can now easily find the moment of inertia about the middle of a side or even a corner. 

 

 
2

2 2 2 2 2 2 21 1 1
( ) ( ) ( ) ( 4 )

12 2 12 4 12
mid a side

b b
I M a b M M a b M M a b− − = + + = + + = +  

 

 
2 2 2 2 2 2 2 21 1 1

( ) ( ) ( ) (4 4 ) ( )
12 2 2 12 3

corner

a b
I M a b M M a b M a b

 
= + + + = + = + 

 
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L11. The Cone. We will determine moments of inertia for a cone, depending on the axis. Below 
are the two cases we will analyze. 
 

 
 
 
Case 1. Cone About Central Axis.  

 
We will need the volume of the cone. This volume is not usually 
remembered. We can quickly calculate it and gain practice for our 
moments of inertia integration. From the figure, 
 

2dV r dz= . 
 

We need to relate r to z. We do it by proportion. 
 

r z

R h
=     =>     

z
r R

h
=  

 
The differential volume element is then 

 

2( )
R

dV z dz
h

=  and we can now find the volume. 
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2

0
( )

h R
V z dz

h
=   

 
2

2

2 0

hR
V z dz

h
=       =>     

2 3

2

0
3

h

R z
V

h
=      =>     

2 3

2 3

R h
V

h
=  

 

21

3
V R h=  

 

Now we are warmed up for the moment of inertia integration. Start with 21

2
dI r dm=  since the 

mass element is a disk and for a disk about its center of mass 21

2
disk disk diskI M R= . Then, 

 

21

2
dI r dm=      =>     21

2
dI r dV=  where 

2
2

3

1

3

M M

R h
R h




= =  and 2( )
R

dV z dz
h

= . 

 

21

2
dI r dV=      =>     2 21

( )
2

R
dI r z dz

h
=      =>     

2
2 2

2

1

2

R
dI r z dz

h
=  

 

Substitute 
z

r R
h

= . 

 
2

2 2

2

1

2

R
dI r z dz

h
=      =>     

2
2 2

2

1
( )

2

z R
dI R z dz

h h
=  

 
2

2 2

2

1
( )

2

z R
dI R z dz

h h
=      =>     

4
4

4

1

2

R
dI z dz

h
=  

 
4

4

40

1

2

h R
I z dz

h
=   

 
4

4

4 0

1

2

hR
I z dz

h
=   

 
4 5

4

0

1

2 5

h

R z
I

h
=  
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4 5

4

1

2 5

R h
I

h
=  

 

4

10

h
I R=  

 

2

3M

R h



=      =>     4

2

3

10

M h
I R

R h



=      =>     23

10

M h
I R

h
=      =>     2 1

3
10

I MR=  

 

23

10
I MR=  

 
Note that the h dropped out! 

 
Since we are doing another case, let’s remind ourselves with did case 1 by including a subscript. 
 

23

10
centralI MR=  

 
 
Case 2. Cone with Axis Through Pointed End.  

 
We start by moving the disk element 
shown in the figure so that this element at 
the axis. The disk has radius r and mass dm 
and it is standing on its edge at x = 0: 
 

2

0

1
( )

4
xdI dm r= = . 

 
Do you remember how we obtained the 
above result from the perpendicular axis 
theorem in order to get the 1/4? 
 

Then we shift it to the right using the parallel axis theorem. 
 

2 21
( ) ( )

4
dI dm r dm x= +  

 

The next step is work with dm: 2dm r dx=  with 
2

3M

R h



=  from the last problem. 
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2 21
( ) ( )

4
dI dm r dm x= +      =>     2 21

( )
4

dI r x dm= +      =>     2 2 21
( )
4

dI r x r dx= +  

 

  2 2 21
( )
4

dI r x r dx= +      =>     4 2 21
( )
4

dI r x r dx= +  

 
We need to get r in terms of x. We do it by proportion similar to what we did in the last problem. 
 

x
r R

h
=  

Proceeding with this substitution, 
 

4 2 21
( )
4

dI r x r dx= +      =>     
4 2

4 2 2

4 2

1
( )
4

x x
dI R x R dx

h h
= +  

 
 

4 4
4 2

4 2

1
( )
4

x x
dI R R dx

h h
= +      =>     

2 4
2 4

2 2

1
( )
4

R x
dI R x dx

h h
= +  

 
2 2

4

2 2

1
( 1)
4

R R
dI x dx

h h
= +  

 
We now integrate from x = 0 to x = h. 

 
2 2

4

2 2 0

1
( 1)
4

hR R
I x dx

h h
= +   

 
2 2 5

2 2

0

1
( 1)
4 5

h

R R x
I

h h
= +  

 
2 2 5

2 2

1
( 1)
4 5

R R h
I

h h
= +  

 
2 3

2

2

1
( 1)
4 5

R h
I R

h
= +  

 

Now substitute in for 
2

3M

R h



= . 

 
2 3

2

2 2

3 1
( 1)
4 5

M R h
I R

R h h



= +  
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2 3

2

3 1
( 1)
4 5

M R h
I

h h
= +  

 
2 2

2

1
3 ( 1)

4 5

R h
I M

h
= +  

 

2 21 1
3 ( )

4 5
I M R h= +  

 

2 23 1
( 4 )

4 5
I M R h= +  

 

2 2

point 

3
( 4 )

20
I M R h⊥ = +  

 
This moment of inertial is the moment of inertial of a cone about an axis perpendicular to its 
central axis and where its apex touches the axis of rotation. 
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L12. Table of Moments of Inertia. 
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The only entry we have not derived is the thick-walled cylinder. Let’s derive that formula now. 
 

2dI r dm=  
 
2dI r dV=  

 

 2 2dI r rLdr =           
2 2

2 1( )

M

R R L



=

−
 

 

 
2

1

2 2
R

R
I r rLdr =   

 
2

1

32
R

R
I L r dr=   

 
2

1

4

2
4

R

R

r
I L=  

 
4 4

2 12 ( )
4 4

R R
I L= −  

 

4 4

2 1

1
( )

2
I L R R= −  

 

4 4

2 12 2

2 1

1
( )

2 ( )

M
I L R R

R R L



= −
−

 

 
4 4

2 1

2 2

2 1

( )1

2 ( )

R R
I M

R R

−
=

−
 

 
2 2 2 2

2 1 2 1

2 2

2 1

( )( )1

2 ( )

R R R R
I M

R R

+ −
=

−
 

 

2 2

2 1

1
( )

2
I M R R= +  

 

2 2

1 2

1
( )

2
I M R R= +  


