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Physics I with Calculus, Prof. Ruiz (Doc), UNC-Asheville (1978-2021), DoctorPhys on YouTube 
Chapter J. Collisions. Prerequisite: Calculus I. Corequisite: Calculus II. 
 
J0. Inelastic and Elastic Collisions. We revisit the collision in the previous chapter with the 

skaters. We employed conservation of momentum 1 1 1 2( )m u m m v= + , where the lady skated at 

speed 1u , collided with her partner at rest 2u , then they continued together at speed v . 

 
Photo Courtesy Stephen Downes, flickr. 
License: Attribution-NonCommercial 2.0 
 
We will now show that kinetic energy is not 
conserved in this case. The kinetic energy 
before is 

2

1 1

1

2
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The kinetic energy afterwards is 
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We can relate v  to 1u  via the momentum equation 1 1 1 2( )m u m m v= + . 
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Substituting in 2
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which is less than 2
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The ratio /after beforeK K  is 
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Kinetic energy is not conserved. We say that the collision is inelastic. For the masses of our 

skaters given in the last chapter: 1 50.0 kgm =  and 2 75.0 kgm = , we find 
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The kinetic energy afterwards is 40% of what it was before the skaters interacted. If the first 
mass is super small, the second mass will stop it during the collision. 
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If the second mass is very small, the first mass will grab it and proceed unimpeded. Technically, 
the combination will travel slightly less than the speed of the incoming mass, i.e., the first mass. 
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Did we increase the kinetic energy since now both masses move at the initial speed? No, 

because in the limit the second mass 2 0m → , i.e., vanishes, and contributes nothing. 

 
Where did the energy for the skaters go? The kinetic energy lost went into the bodies of the 
skaters. They absorbed the extra energy. 
 
The two types of collisions are 
 
 elastic collision – kinetic energy is conserved, 
 inelastic collision – kinetic energy is not conserved. 
 
In both cases energy is conserved, meaning the total energy. When the two masses get 
connected, one also calls that case a perfectly inelastic collision. 
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J1. Elastic Collisions I. We consider a 1-dimensional collision where mass 1m  collides with 2m . 

There are no external forces. Think of doing the experiment in outer space. But it will turn out 
that our formulas apply quite well to examples on Earth, such as billiards. There, the external 
force of gravity pulls downward and does no work on the horizontally moving balls. 
 
No external forces means we can apply conservation of momentum. We will also assume elastic 
collisions, which means all the energy stays in the form of kinetic energy when the masses 
separate after contact. Such collisions allow us to apply conservation of kinetic energy. 
 
In this section only the first mass moves initially. The second mass is at rest. In the next section, 
we will analyze the situation where both masses have initial velocities. 
 
The equations are: 
 

 conservation of momentum: 1 1 1 1 2 20m u m v m v+ = + , 

 

 conservation of kinetic energy: 2 2 2

1 1 1 1 2 2

1 1
0

2 2
m u m v m v+ = + , 

 
where “u” stands for an initial velocity and “v” for a final. I use this convention since I hate 
subscripts and do not want to include “i” for initial and “f” for final in addition to “1” and “2” as 
subscripts. I pick u for initial (before) and v for final (after) since u comes before v in the 
alphabet. 
 
What is of interest? That would be the final velocities. I am going to work with pairs of equation 
and will bracket them like a friend of mine did in grad school. 
 

1 1 1 1 2 2

2 2 2

1 1 1 1 2 2
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2 2 2
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m u m v m v
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 
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Multiply the second equation by 2. 
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Now bring terms with the subscript 1 to the left side in each case. 
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Next we factor the difference of squares using the identity 2 2 ( )( )a b a b a b− = + − . 
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We make a big discovery by staring at these equations. Why must the following be true? 
 

1 1 2( )u v v+ =  

 
If you do not see it, what the doctorphys video on YouTube for this section. 

 
With the initial speed on the left side, we find the next equation. 

 

1 2 1u v v= −  

 
In words, this equation says the velocity of approach equals the velocity of separation. 

 

Using 1 1 2( )u v v+ =  as our second equation, our two equations are now 

 

1 1 1 2 2

1 1 2

( )m u v m v
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 

+ = 
. 

 

Eliminating 2v  in the first equation, using the second, 

 

1 1 1 2 1 1( ) ( )m u v m u v− = +  

 

We want 1v  on one side. 

 

1 1 1 1 2 1 2 1m u m v m u m v− = +  

 

1 1 2 1 1 1 2 1m u m u m v m v− = +  



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

1 2 1 1 2 1( ) ( )m m u m m v− = +  
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What remains now is to find the formula for 2v . 

 

We can use 1 1 2( )u v v+ =  from above. 
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Our two final velocity equations are below. 
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Are these equations reasonable? 

We do three checks below: pool, baseball, and tennis. 
 

(i) Pool: Cue hits a ball head on   =>   1 2m m=    =>   1 0v =    and   2 1v u=  

 The cue ball stops and the ball that is hit takes off at 2 1v u= . Looks good! 

 

(ii) Baseball: Toss the ball up and hit it   =>   1 2m m    =>   1 1v u    and   2 12v u  

The massive bat ( 1 2m m ) keeps moving at 1 1v u  and the ball takes off at 2 12v u . 

We may not be sure of the 2 12v u  from intuition, but 1 1v u  is observed as the bat 

continues to swing. In a second, I will show you intuitively why 2 12v u . 

 

(iii) Tennis: Meet the ball with the racket   =>   2 1m m    =>   1 1v u −    and   2 0v   

The ball reflects back and the racket remains stationary. 
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Courtesy Daniel Stockman, flickr 
License: Attribution-ShareAlike 2.0 
 
When a ball hits another head on with the same 
mass, the first ball stops and the second takes off 
at the speed that the first ball had initially. 
 
This observation is predicted by our formula on 
the previous page. 
 

 
Courtesy Erik Drost, flickr 
License: Attribution 2.0 Generic 
Jason Kipnis Home Run (2013) 
 
The case we analyzed on the 
previous page was tossing the 
ball up and hitting it. In the 
photo at the left, the ball is 
coming towards the batter. 
However, in both cases, the 
much more massive bat, 
compared to the ball, continues 
on with about the same bat 
speed. We will see shortly what 
happens for an incoming pitch. 

 
Courtesy Elizabeth Kuhns, flickr 
Attribution-Noncommercial-
NoDerivs 2.0 Generic 
Tennis 2009 Worth 
 
In our tennis example we 
considered a stationary racket as 
the ball comes in to hit it. Our 
physics prediction was that the 
racket will remain stationary and 
the ball will bounce off it leaving 
with the same speed in the 
opposite direction. 
 
 

 

https://creativecommons.org/licenses/by-sa/2.0/deed.en
https://creativecommons.org/licenses/by/2.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
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Before we leave this section, let me show you why with the baseball example, the ball leaves at 
twice the speed of the bat. The main condition here is that the bat is much greater in mass 
compared to the ball. If we imagine ourselves as a super hero riding along with the bat at speed 
u  along the positive x-direction, we see the ball coming towards us at speed u− . 
 

Before, On Ball Field: batu u=  and 0ballu = . 

Before, Riding on Bat (the primed reference frame): ' 0batu =  and 'ballu u= − . 

 
The secret in going from reference frame of the ball field to bat frame is to subtract u  from 
each speed. To get back to the ball field, we need to add u  to each velocity. With the collision, 
we first check out what happens from the primed frame, i.e., riding with the swinging bat. 

 

After, Riding on Bat (the primed reference frame): ' 0batu =  and 'ballu u= + . 

 since the ball bounces off the “stationary” bat (for us moving with the bat). 
 
To get back to the ball field reference frame, we use our secret: add u  to each velocity. 
 

After, On Ball Field: ' 0batu u u= + =  and ' 2ballu u u u= + + = . 

 
J2. Elastic Collisions II. Now we treat the general one-dimensional case where two masses are 
moving and then collide. 
 

  
The equations are: 
 

 conservation of momentum: 1 1 2 2 1 1 2 2m u m u m v m v+ = + , 

 

 conservation of kinetic energy: 2 2 2 2

1 1 2 2 1 1 2 2

1 1 1 1

2 2 2 2
m u m u m v m v+ = + , 

 
where “u” once again stands for an initial velocity and “v” for a final. I continue to use this 
convention since I hate subscripts and do not want to include “i” for initial and “f” for final in 
addition to “1” and “2” as subscripts. I remember u is before since u comes before v. 
 
The algebra is going to be messy so I pause for a moment to see if there is a shortcut. Here is 

what we obtained in the previous section when 1 0u   and 2 0u = . 
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If we had the reverse situation, where 1 0u =  and 2 0u   we could get the result by switching 

the subscripts. 

2 1
2 2

1 2

( )
m m

v u
m m

−
=

+
          2

1 2

1 2

2
( )

m
v u

m m
=

+
 

 
But you might say that there never will be a collision now because the second mass is going to 
the right with the left mass at rest. That is correct. A collision would occur only if the velocity of 
the second mass was negative, i.e., moving to the left initially. 
 
So I boldly claim that the most general case is found by combining the equations for each 
individual case above. 
 

1 2 2
1 1 2

1 2 1 2

2
( ) ( )
m m m

v u u
m m m m

−
= +

+ +
 

 

1 2 1
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1 2 1 2

2
( ) ( )

m m m
v u u

m m m m

−
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+ +
 

 
Now we will check it out by a brute force calculation to be absolutely sure. 
 
We start with 
 

 conservation of momentum: 1 1 2 2 1 1 2 2m u m u m v m v+ = + , 

 

 conservation of kinetic energy: 2 2 2 2

1 1 2 2 1 1 2 2

1 1 1 1

2 2 2 2
m u m u m v m v+ = + . 

 
We have two equations with the two unknowns being the final velocities. 

 
I will use my bracket notation to group the pair of equations. 

 

1 1 2 2 1 1 2 2

2 2 2 2

1 1 2 2 1 1 2 2

1 1 1 1

2 2 2 2

m u m u m v m v

m u m u m v m v
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 
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 

 

 

Multiply the second equation by 2.     
1 1 2 2 1 1 2 2

2 2 2 2

1 1 2 2 1 1 2 2

m u m u m v m v

m u m u m v m v

+ = + 
 

+ = + 
 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

Get mass 1 on the left side.     
1 1 1 2 2 2

2 2 2 2

1 1 1 2 2 2

( ) ( )

( ) ( )

m u v m v u

m u v m v u
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Factor the second equation.     1 1 1 2 2 2

1 1 1 1 1 2 2 2 2 2

( ) ( )

( )( ) ( )( )

m u v m v u

m u v u v m v u v u
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Rearrange the second equation.     
1 1 1 2 2 2

1 1
1 1 1 2 2 2

2 2

( ) ( )

( )
( ) ( )

( )

m u v m v u

u v
m u v m v u

v u

− = − 
 

+ 
− = − + 

 

 

Stare at the equations. We can see 1 1

2 2

( )
1

( )

u v

v u

+
=

+
, which leads to 1 1 2 2u v v u+ = + . 

 

1 2 2 1u u v v− = −  

 
We again get the result that 

 
the velocity of approach equals the velocity of separation. 

 

Use 1 2 2 1u u v v− = −  in the form 2 1 2 1v u u v= − +  with our last expression for equation 1. 

 

1 1 1 2 2 2( ) ( )m u v m v u− = −      =>     1 1 1 2 1 2 1 2( ) ( )m u v m u u v u− = − + −  

 

Solve for 1v . 

 

1 1 1 1 2 1 2 2 2 1 2 2m u m v m u m u m v m u− = − + −  

 

1 1 1 1 2 1 2 2 2 1 2 2m u m v m u m u m v m u= + − + −  

 

1 1 1 2 1 2 1 2 2 2 2( )m u m m v m u m u m u= + + − −  

 

1 2 1 1 1 2 1 2 2 2 2( )m m v m u m u m u m u+ = − + +  

 

1 2 1 1 1 2 1 2 2( ) 2m m v m u m u m u+ = − +  

1 2 1 1 2 1 2 2( ) ( ) 2m m v m m u m u+ = − +  

 

1 2 2
1 1 2

1 2 1 2

2
( ) ( )
m m m

v u u
m m m m

−
= +

+ +
 

This result is the one we wrote down using symmetry. 
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To get 2v  the long way, substitute our result for 1v  into  1 2 2 1u u v v− = − . 

 

1 2 2
1 2 2 1 2

1 2 1 2

2
( ) ( )
m m m

u u v u u
m m m m

 −
− = − + 

+ + 
 

 

1 2 2
2 1 2 1 2
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2
( ) ( )
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v u u u u
m m m m

 −
= − + + 

+ + 
 

 

1 2 2
2 1 2

1 2 1 2

2
1 1

m m m
v u u

m m m m

   −
= + + − +   

+ +   
 

 

1 2 1 2 1 2 2
2 1 2

1 2 1 2 1 2 1 2

2m m m m m m m
v u u

m m m m m m m m

   + − +
= + + − +   

+ + + +   
 

 

1 2 1 2 1 2 2
2 1 2
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2m m m m m m m
v u u

m m m m
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2m m m
v u u

m m m m

   −
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+ +   
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−
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Again, we find the result we simply wrote down by way of symmetry earlier. 

 

For a swinging bat 1 0u   hitting an incoming pitch 2 0u   where 1 2m m  (or 2 0m  ), 

 

the bat 1 2 2
1 1 2

1 2 1 2

2
( ) ( )
m m m

v u u
m m m m

−
= +

+ +
   =>   1 1v u→ . 

 
The bat maintains its initial velocity once again! 

 

The ball flies off at 1 2 1
2 1 2

1 2 1 2

2m m m
v u u

m m m m

   −
= +   

+ +   
   =>   2 1 22v u u= − . Note 2 0u  . 

 

Therefore, the ball goes flying off at a speed 2 12v u .
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J3. The Double Ball Drop.  
 

Many years ago when I taught intro physics, I used to 
bring two good bouncy rubber balls to class. One was 
larger than the other. I placed the small one on top of 
the larger one and carefully dropped them from a 
height h . When the pair reached the ground, the 
smaller one shot up and hit the ceiling. I then 
gathered data to see how high that physics would 
predict that the smaller ball would reach. 
 

When the lower ball reaches the ground, it bounces and changes direction colliding with the 
upper ball still on its way down. We have the collision formulas for this one-dimensional type of 
collision. 

 

1 2 2
1 1 2

1 2 1 2

2
( ) ( )
m m m

v u u
m m m m

−
= +

+ +
 1 2 1

2 1 2

1 2 1 2

2
( ) ( )

m m m
v u u

m m m m

−
= +

+ +
 

 

I measured the masses of each ball with a laboratory scale and found 1 51 gm =  and 2 17 gm = . 

The heavier ball had three times the mass of the smaller one. So we can write 1 23m m= . At the 

moment of the collision the lower and larger mass is traveling upward with 1 0u  , choosing up 

as positive. The smaller mass on top is traveling with velocity 2 1u u= − . Why is this? A moment 

before the large ball makes contact with the floor, it is traveling downward with speed 
1u . It 

then bounces off the floor and begins traveling upward with speed 
1u . When this occurs, the 

smaller mass is still traveling downward with speed 
1u . Since 1 0u  , we have 2 1 0u u= −   for 

the smaller ball since down is negative. The collision then occurs. The final velocities are 

obtained from the formulas. I am really interested in 2v , the velocity of the small ball after the 

collision. 

1 2 1 2 2 2
2 1 2 1 1

1 2 1 2 2 2 2 2

2 2 3 3
( ) ( ) ( ) ( )( )

3 3

m m m m m m
v u u u u

m m m m m m m m

−  −
= + = + −

+ + + +
 

 

2 2
2 1 1

2 2

6 2
( ) ( )( )
4 4

m m
v u u

m m

−
= + −  

 

2 1 1

3 1

2 2
v u u= +  

 

2 12v u=  

 
How does this translate to the height reached after the bounce?. 
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When you drop a single ball from height h  from rest, we can find the velocity just before hitting 
the ground from conservation of energy. 
 

21

2
mgh mv=  

 
2h v  

 
The height is proportional to the square of the velocity. On the bounce, assuming a perfectly 
elastic bounce, the ball will return to its initial height. Now, since 
 

2 12v u= , 

 
squaring both sides gives 
 

2 2

2 14v u= . 

 
The associated heights are then related as 
 

2 14h h= , 

 
indicating that the second ball will reach a height four times the height from which I dropped 

the balls. Remember, dropping from height 1h  gets you 1u  at the ground to get the collision set 

up in the first place. 
 
Since I dropped the pair from a height of about 1 meter, the little ball is predicted to rise to 4 
meters after the collision. The ceiling was about 2.5 meters high so that the little ball should 
smack into the ceiling. It did and the class was impressed. But sometimes I didn’t drop the balls 
with the little one precisely on top of the bigger one. In those instances, the little ball shot off at 
an angle. After a few tries, I was able to get it right when I didn’t on the first attempt. Of course, 
the most impressive demonstration is to practice so you get it right the first time and surprise 
the class with the little ball banging into the ceiling. 
 
Let’s see what happens to the larger ball after the collision. 
 

1 2 2 2 2 2
1 1 2 1 1

1 2 1 2 2 2 2 2

2 3 2
( ) ( ) ( ) ( )( )

3 3

m m m m m m
v u u u u

m m m m m m m m

− −
= + = + −

+ + + +
 

 

2 2
1 1 1

2 2

2 2
( ) ( )( )
4 4

m m
v u u

m m
= + −  
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1 1 1

1 1
( )

2 2
v u u= + −  

 

1 1

1 1
( )
2 2

v u= −  

 

1 0v =  

 

Wow. With the specific mass combination 1 23m m=  you get the result that the large ball stays 

on the ground after the collision! And it did! 
 
Later, toys like the Seismic Acceleration and Astro Blaster became readily available. They put a 
few balls with decreasing size on a rod so that you can drop them easily to the ground with 
them lined up vertically. The extra balls amplifies the effect! But be sure to wear safety glasses 
using this toy due to the multiplying effect of the collisions. Note that the glasses come with it. 
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J4. Coefficient of Restitution. If you drop a ball with mass m  from height H , the velocity u  
just before hitting the ground is easily found from conservation of energy. 
 

1 1 2 2K U K U+ = +  

 

21
0 0

2
mgH mu+ = +  

 

21

2
mu mgH=  

 
2 2u gH=  

 

2u gH=  

 
But after colliding with the floor, the velocity on its way up is v u . We 
know the bounce is not elastic because the ball will rise to a height 
h H . We apply conservation of energy again for the way up. 
 

1 1 2 2K U K U+ = +  

 

21
0 0

2
mv mgh+ = +  

 
2 2v gh=  

 

2v gh=  

 
We define the coefficient of restitution as below. 
 

v
e

u
=  

 
For a collision where two masses are moving, the general formula is given by the ratio of the 
velocity of separation to the velocity of approach. 
 

2 1

1 2

v v
e

u u

−
=

−
 

 

For dropping a ball with up being positive, the Earth as mass 1 and ball as mass 2: 1 0u = , 

1 0v = , 2u u= − , and 2v v= , we recover our definition for dropping a ball. 
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2 1

1 2

0

0 ( )

v v v v
e

u u u u

− −
= = =

− − −
 

 
We can do an experiment to measure the coefficient of restitution for a ball and a specific floor 
by dropping the ball from height H  and see how high h  the ball goes up after the bounce. The 
coefficient of restitution is then determined by 
 

2

2

ghv
e

u gH
= =  

 

v h
e

u H
= =  

 
Three cases are listed in the table with various descriptive names you might encounter, along 
with an example of each. The coefficient of restitution depends on both the object dropped and 
the nature of the floor. A ball bouncing off a rug will not be the same as bouncing off concrete. 

 

Coefficient of 
Restitution e 

Description 
1 

Description 
2 

Dropping 
Examples 

1e =  Elastic Perfectly 
Elastic 

Dropping an “Ideal” 
Superball 

0 1e   Inelastic Plastic Dropping Real 
Balls 

0e =  Perfectly 
Inelastic 

Perfectly 
Plastic 

Dropping Mashed 
Potatoes 

 
Note that our colliding skaters where they skated together after the collision is an example of a 
perfectly inelastic collision and the final kinetic energy is not zero as in the mashed potato case 
above. Remember that we found in an earlier section 
 

1

1 2

after

before

K m

K m m
=

+
. 

 

Now if the mass you run into is super massive like a wall 2m → , then you get zero like the 

dropped mashed potatoes. The lost kinetic energy goes into deforming the mashed potatoes. 
 
Some texts may include explosions, calling those super elastic since kinetic energy is gained. But 
I’d rather not mix explosions with the regular types of collisions we are working with. 
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J5. The Pendulum Hitting a Block.  

A mass 1 1.0 kgm =  is released from rest, 

swinging down from 90.0° on a pendulum of 
length 120.0 cml =  and eventually collides 

with a mass 2 2.5 kgm =  at rest on the floor. 

Find the final velocities of the masses for an 

elastic collision and no friction between 2m  

and the ground. 
 

The equations for the final velocities derived in class for a collision where mass 1m  is moving in 

the x-direction towards 2m  at rest are 

 

1 2
1 1

1 2

( )
m m

v u
m m

−
=

+
     and     1

2 1

1 2

2
( )

m
v u

m m
=

+
. 

 
We do not have to rederive these just like we never rederived our kinematics formulas when 
we used them in problems. The velocity equations do not need to be memorized. However, you 
should have the four basic kinematic equations memorized. 
 

What is missing so far is 1u . How do we get 1u ? The answer is conservation of energy. 

 

2

1 1 1

1

2
m gl m u=      =>     2

12gl u=      =>     1 2

m m m
2 2(9.8 )(1.20 m) 23.52 4.850

s s s
u gl= = = =  

 
We can now find the final velocities. 

 

1 2 1 2
1 1

1 2 1 2

1.0 kg 2.5 kg m 1.5 m
( ) ( ) 2 ( ) 4.850 ( ) 4.850

1.0 kg 2.5 kg s 3.5 s

m m m m
v u gl

m m m m

− − − −
= = =  = 

+ + +
 

 

1

3 m m
4.850 2.1

7 s s
v = −  = −  

 

1
2

1 2

2 2 1.0 kg m 2.0 m
( ) 2 ( ) 4.850 ( ) 4.850

1.0 kg 2.5 kg s 3.5 s

m
v gl

m m


= =  = 

+ +
 

 

1

4 m m
4.850 2.8

7 s s
v =  =  

 

The pendulum mass 1m  by the way moves back to the left after impact since 1 0v  . 
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J6. The Ballistic Pendulum. In the old days they used collision physics to measure the speed of a 
bullet. A bullet with mass m  was fired into a block of wood having mass M  which was 
attached to a pendulum. The combination then rose up to a height h .  
 

Courtesy Steven H. Keys 
http://www.keysphotography.com 
Wikipedia, License:  Creative 

Commons Attribution 4.0 Intl. 
 
A student ballistic pendulum 
appears in the left photo. 
There are two ropes attached 
to the block. Decades ago we 
had a lab with the ballistic 
pendulum to reinforce the 
formulas we were learning in 
class. 
 
A simplified schematic of the 
ballistic pendulum appears 
next. 
 
Adapted from Burn, who 
adapted from Makeemlighter 
Wikipedia, Public Domain 
 
There is a story on the 
Internet where a former 
student says her professor 
used to do the demonstration 
live with a rifle in the tiered 

300-seat auditorium in Herzstein Hall, Rice University, Houston, Texas, USA. 
 
Problem. Find the bullet speed in m/s for a 12-g bullet fired into a 7-kg block of wood where 
the combination rises 5 cm. Data from Numerade. 
 
Solution. Let’s start with conservation of momentum before and after the collision. 
 

0 ( )mv m M v= + , 

 

where 0v  is the speed of the bullet and v  is the speed of the bullet-wood combination after the 

collision. The mass of the bullet is m and the mass of the block is M. For the second phase, 
where the bullet-wood combination rises, we can use conservation of energy. 

http://www.keysphotography.com/
https://en.wikipedia.org/wiki/en:Creative_Commons
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by/4.0/deed.en
https://www.numerade.com/ask/question/in-a-ballistic-pendulum-a-gun-is-fired-into-a-block-of-wood-hanging-from-long-cords-to-push-it-forward-assume-the-bullets-mass-is-12-g-ad-the-blocks-mass-is-7-kg-after-the-bullet-is-embedded-38999/
https://www.numerade.com/ask/question/in-a-ballistic-pendulum-a-gun-is-fired-into-a-block-of-wood-hanging-from-long-cords-to-push-it-forward-assume-the-bullets-mass-is-12-g-ad-the-blocks-mass-is-7-kg-after-the-bullet-is-embedded-38999/
https://www.numerade.com/ask/question/in-a-ballistic-pendulum-a-gun-is-fired-into-a-block-of-wood-hanging-from-long-cords-to-push-it-forward-assume-the-bullets-mass-is-12-g-ad-the-blocks-mass-is-7-kg-after-the-bullet-is-embedded-38999/
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21
( ) ( )

2
m M v m M gh+ = +      =>     2v gh= . 

 

We substitute this v  into the momentum equation 0 ( )mv m M v= + . 

 

0 ( ) 2mv m M gh= +  

 

0 ( ) 2
m M

v gh
m

+
=  

 

0 (1 ) 2
M

v gh
m

= +  

 

0 2

7000 g m
(1 ) 2(9.8 )(0.05 m)

12 g s
v = +  

 

0

m
(584.33) 0.9800

s
v =  

 

0

m
578.46

s
v =  

 

0

m 1 km 3600 s km
578.46 ( )( ) 2082

s 1000 m 1 h h
v = =  

 

0

km 1 mi mi
2082 ( ) 1294

h 1.609 km h
v = =  

 
 

0

m
580

s
v =           0

km
2100

h
v =           0

mi
1300

h
v =  

 
 
The speed of sound is 340 m/s. This bullet travels faster than sound speed and therefore, there 
will be a sonic boom. 
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J7. Blocks and a Spring. 
 

Problem. A 3-kg mass is traveling to the right 
at 15 m/s. It reaches a 15-kg block that is 
traveling slower at 5 m/s to the right. As the 
3-kg mass catches up to the 15-kg mass, it 
begins to compress the spring which has 
spring constant 1220.0 N/m. Find the 
maximum compression of the spring and 
velocity of the system at maximum 
compression. The collision is elastic and 
there is no friction. 

 
 Solution. Elastic and no friction mean we can use conservation of energy with kinetic and 
potential energies: 

2 2 2 2 2

1 1 2 2 1 1 2 2

1 1 1 1 1

2 2 2 2 2
m u m u m v m v kx+ = + + , 

 

where x  is maximum compression with 1 2v v v= = , the velocity when the two mass move 

together at the same speed at the moment of maximum compression. Therefore, 
 

2 2 2 2

1 1 2 2 1 2

1 1 1 1
( )

2 2 2 2
m u m u m m v kx+ = + + . 

 
Conservation of momentum gives 
 

1 1 2 2 1 1 2 2m u m u m v m v+ = +      =>     1 1 2 2 1 2( )m u m u m m v+ = +      =>     1 1 2 2

1 2

m u m u
v

m m

+
=

+
. 

 
We will now enter numbers into our two main equations: 
 

1 1 2 2

1 2

m u m u
v

m m

+
=

+
     and     2 2 2 2

1 1 2 2 1 2

1 1 1 1
( )

2 2 2 2
m u m u m m v kx+ = + + . 

 
(3)(15) (15)(5) 45 75 m

6.667
3 15 18 s

v
+ +

= = =
+

 

 

2 2 2 2

1 1 2 2 1 2

1 1 1 1
( )

2 2 2 2
m u m u m m v kx+ = + +    =>   2 2 2 2

1 1 2 2 1 2( )m u m u m m v kx+ = + +  

 
2 2 2 2(3)(15) (15)(5) (3 15)(6.667) (1220.0)x+ = + +  
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2675 375 800.08 1220.0x+ = +  
 

Normally I would keep 800.08 and round off last, but I am going for only 2 significant figures. 
 

21050 800 1220x= +      =>     2250 1220x=  
 

2 250
0.205

1220
x = =  

 

0.205x =  

 
0.45 mx =  

 
or 
 

45 cmx =  
 

m
6.667

s
v =  

 

m
6.7

s
v =  
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J8. Billiards: Collisions in Two Dimensions. We apply our laws of physics to billiards. In the 
typical shot one ball is sent to collide with another.  See the figure below. 

 
The cue ball (white) hits the 12 ball a little off center. The collision results in the balls going off 
at an angle after the collision. The masses of the balls are the same. Let’s analyze this problem 
and see what we can discover. The initial speed of the cue ball is u and it travels towards the 
stationary 12 ball. The speeds after the collision are v and w, as my preference is not to use 
subscripts. We start with conservation of momentum. We have two dimensions to consider: x 
and y. 
 

cos cosmu mv mw = +  

 
0 sin sinmv mw = −  

 
For an elastic collision we add conservation of energy. 
 

2 2 21 1 1

2 2 2
mu mv mw= +  

 
We can write these three equations as follows. 
 

2 2 2

cos cos

sin sin

mu mv mw

mv mw

mu mv mw

 

 

 = +
 

= 
 

= + 

 

 
The mass factors divide out everywhere. 
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2 2 2

cos cos

sin sin

u v w

v w

u v w

 

 

 = +
 

= 
 

= + 

 

 
We have three equations but four unknowns: v ,  , w , and  , given u . The third equation, 

2 2 2u v w= + , looks like a Pythagorean equation! It means that the outgoing balls are 
perpendicular to each other! Here is another way to see it. Write the conservation of 
momentum as a vector equation. 

mu mv mw= +  
 

The masses cancel out. 
 

u v w= +  
 

Now we can use the dot product. 
 

2 ( ) ( )u u u v w v w=  = +  +  

 
2u v v w v v w w w=  +  +  +       =>     2 2u v v v w w w=  +  +   

 
2 2 22u v v w w= +  +  

 

But we know 2 2 2u v w= +  from our third equation of our three earlier equations. 
 

Therefore, 2 2 2u v w= +  means 0v w = , i.e., 90 + =  . 

 
Two cases are shown below, with two different offsets for the points of collision contact. 
Remember, our model assumes elastic collisions. Our result is a profound general property of 
pool shots. In our YouTube video we will include a some pool collisions so you can judge for 

yourself concerning the 90°. 
 

 
 


