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Physics I with Calculus, Prof. Ruiz (Doc), UNC-Asheville (1978-2021), DoctorPhys on YouTube 
Chapter I. Conservation of Momentum. Prerequisite: Calculus I. Corequisite: Calculus II. 
 
I1. The Center of Mass. The concept of the center of mass will arise naturally as we apply 
Newton’s Second Law to a system of particles or bodies. The figure below shows three particles 

and their positions described by three vectors 
1r , 

2r , and 
3r . 

 
Imagine more particles so that there are n  of them. We 
can write Newton’s Second Law for each particle, where 
each force represents the net force on each particle. 
 

1 1 1F m a=      
2 2 2F m a=      

3 3 3F m a=      …     
n n nF m a=  

 
Now add these equations. 
 

1 2 3 1 1 2 2 3 3... ...n n nF F F F m a m a m a m a+ + + + = + + + +  

 
All of the internal forces that the masses exert on each other will cancel according to Newton’s 
Third Law of Action-Reaction. We will be left with external forces acting on the masses. Let the 

sum of the external forces be 
extF . Our equation then becomes 

 

1 1 2 2 3 3 ...ext n nF m a m a m a m a= + + + + . 

 

We would like 
extF Ma= , where 

 

1 2 3 ... nM m m m m= + + + +  

 

is the total mass. What is the special a  that results? 
 

We will call it the acceleration of the center of mass. Then 
 

ext cmF Ma=  with 1 2 3 ... nM m m m m= + + + + . 

 

At this point we use the general fact that 
dv

a
dt

=  to obtain 

 

31 2
1 2 3 ...cm n

ext n

dv dv dvdv dv
F M m m m m

dt dt dt dt dt
= = + + + + , 

 

1 1 2 2 3 3 ...cm n nMv m v m v m v m v= + + + + . 

https://www.youtube.com/user/doctorphys
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Next we use the general fact that 
dr

v
dt

=  to get 

 

31 2
1 2 3 ...cm n

n

dr dr drdr dr
M m m m m

dt dt dt dt dt
= + + + + , 

 

1 1 2 2 3 3 ...cm n nMr m r m r m r m r= + + + + . 

 

The center of mass is defined as 
cmr . 

 

1 1 2 2 3 3

1 2 3

...

...

n n
cm

n

m r m r m r m r
r

m m m m

+ + + +
=

+ + + +
 

 

We can express the vector 
cmr  in terms of its components 

 

cm cm cm cmr x i y j z k= + + , 

 

where cmx , cmy , and cmz  are given below. 

 

1 1 2 2 3 3

1 2 3

...

...

n n
cm

n

m x m x m x m x
x

m m m m

+ + + +
=

+ + + +
 

 

1 1 2 2 3 3

1 2 3

...

...

n n
cm

n

m y m y m y m y
y

m m m m

+ + + +
=

+ + + +
 

 

1 1 2 2 3 3

1 2 3

...

...

n n
cm

n

m z m z m z m z
z

m m m m

+ + + +
=

+ + + +
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I2. The Center of Mass of Two Masses. Find the center of mass for the pair below.  
 

Images Courtesy 
publicdomainvectors.org 

 

1 1 2 2

1 2

cm

m x m x
x

m m

+
=

+
 

 

What happens if 1 2m m m= = ? 

 

1 2 1 2

2
cm

mx mx x x
x

m m

+ +
= =

+
 

 
The center of mass is exactly between the two masses. Think of it as a balance point. What 
about the result for a real basketball and pool ball? The mass of our basketball is about 

0.62 kg . We will use 1 0.64 kgm =  so the mass is four times the pool ball mass, as a typical pool 

ball has a mass 2 0.16 kgm = . The answer is 

 

1 1 2 2 1 2 1 2
1 2

1 2

(0.64 kg) (0.16 kg) 0.64 0.16 4 1

0.64 kg 0.16 kg 0.80 5 5
cm

m x m x x x x x
x x x

m m

+ + +
= = = = +

+ +
. 

 
Where is this point? It is 

1 1 2 1 1 2 2 1

4 1 1 1 1
( )

5 5 5 5 5
cmx x x x x x x x x− = + − = − + = − , 

 
i.e., to the right of the basketball center at 1/5 the distance between the mass centers. 

 
It is convenient to choose the origin at the center 
position of the first mass. 
 
Images Courtesy publicdomainvectors.org 
 
The calculation is now much simpler. 
 

1 1 2 2 2 2

1 2 1 2

cm

m x m x m x
x

m m m m

+
= =

+ +
 

 

2 2
2

(0.16 kg) 0.16 1

0.64 kg 0.16 kg 0.80 5
cm

x x
x x= = =

+
 

 
Again we get the position to the right of the basketball center at 1/5 the distance between the 
mass centers. Depending on the separation, the center of mass can be inside the basketball. 

https://publicdomainvectors.org/
https://publicdomainvectors.org/
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At what distance from the center of the Earth is the center of mass for the Earth-Moon system? 

 
Apollo 17 Picture of the Whole Earth: NASA 

Telescopic Image of the Full Moon: Gregory H. Revera 
Illustration: Vegar Ottesen 

License: Creative Commons Attribution-Share Alike 4.0 International 
 

The mass of the Earth is 245.972 10  kgM =   and the mass of the Moon is 227.348 10  kgm =  . 

The distance between the Earth and Moon is given in the above figure as 384,400 kmd = . 

Choose the center of the Earth as the origin. 
 

1 1 2 2 1 2 2 2

1 2

0
cm

m x m x Mx mx M mx mx md
x

m m M m M m M m M m

+ +  +
= = = = =

+ + + + +
 

 
22

24 22

7.348 10  kg d

5.972 10  kg 7.348 10  kg
cm

md
x

M m

 
= =

+  + 
 

 
22

22 22

7.348 10  7.348
d

597.2 10 +7.348 10 597.2+7.348
cmx d


=  = 

 
 

 
7.348 7.348

0.01215 (0.01215)(384,400 km) 4670 km
597.2 +7.348 604.548

cmx d d d=  =  = = =  

 
The center of mass is 1700 km below the Earth’s surface since the Earth’s radius is 6370 km . 

https://commons.wikimedia.org/wiki/User:El.vegaro
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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I3. The Center of Mass for a Rod of Length L. The usual way to calculate the center of mass for 
a rod is to use calculus. But just in case you did not get this far yet in Calculus II, I will first do it 
without calculus. In fact, I will do it several ways, where one method will be using calculus. One 
of the finest goals in science is to be able to do things more than one way. This aim is also good 
for anything in life. For example, when I taught at the university, I had many ways to get to 
work: driving, bumming a ride off a neighbor, my wife taking me, the bus, walking (I did walk 
home a couple of times), and other ways which I never needed such as a Taxi or Uber. 
 
Feynman once said something to the effect that any good physicist had 6 or 7 ways to 
understand results. These different approaches include various ways to derive the result and 
visualizations such as graphs. So here are some different methods to find the center of mass for 
a rod. 
 
Method 1. Symmetry. We have found that for two equal masses, the center of mass is at the 
midpoint between the two masses. 

1 2 1 2

2
cm

mx mx x x
x

m m

+ +
= =

+
 

 
So we break up the rod into 
segments and pair them off, 
each one on the left with its 
partner on the right (by color). 
The center of mass for each pair 
is at the midpoint between each. 
 
Therefore, the center of mass for 

the entire rod is at the midpoint of the rod, which midpoint serves as the midpoint for all the 
mass segment pairs. 

2
cm

L
x =  

 
Method 2. The Balance Point. The center of mass is the balance point. 

 
Courtesy APN MJM, Wikimedia 
License: Creative Commons Attribution-ShareAlike 3.0 
 
The balance point for a rod is its center, assuming a uniform 
rod in terms of mass density. Therefore, the center of mass for 
the rod is / 2L . For the irregular shape of the bird at the left, 
the center of mass can be found experimentally by finding the 
balance point. Since the wings have prominent mass and stick 
out in the front, it appears that the bird has more mass on the 
other side and that it is floating. 

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Method 3. The Summing of Small Masses. In the figure below we have broken the rod into 

little mass segments of m . There are n  segments; therefore, 
M

m
n

 = , where M  is the total 

mass of the rod of length L . 
The distance from the reference 
point where 0x =  to each of the 
first three mass segments are 
 

1
2

x
x


= , 2

3

2

x
x


= , 3

5

2

x
x


= . 

 
The coefficients in front of the 

x  factors are 1, 3, and 5, the 
first three odd numbers. The nth odd number can be given as 2 1n − . Pick several counting 
numbers for n  to check this out. We are now ready for the center of mass formula: 
 

1 1 2 2 3 3

1 2 3

...

...

n n
cm

n

m x m x m x m x
x

m m m m

+ + + +
=

+ + + +
, 

 

where 1 2 3 ... n

M
m m m m m

n
= = = =  = , 

 

and 1
2

x
x


= , 2

3

2

x
x


= , 3

5

2

x
x


=  … 

(2 1)

2
n

n x
x

− 
= . 

 
Using the mass relations, we obtain 
 

1 1 2 2 3 3 1 2 3 1 2 3

1 2 3

... ( ... ) ( ... )

...

n n n n
cm

n

m x m x m x m x x x x x x x x xM
x m

m m m m M n M

+ + + + + + + + + +
= =  =

+ + + +
 

 

1 2 3

1
( ... )cm nx x x x x

n
= + + +  

 
Now substitute in the values for the positions. 

 

1 3 5 (2 1)
...

2 2 2 2
cm

x x x n x
x

n

   −  
= + + + 

 
=  

1
1 3 5 ... (2 1)

2
cm

x
x n

n


= + + + + −  

 
 Now comes a neat formula for summing odd numbers. 
 

21 3 5 ... (2 1)n n+ + + + − =  
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Here is a visual proof?  
 
You can also verify the first few specific cases. 

 
1 = 12 

 
1 + 3 = 4 = 22 

 

1 + 3 + 5 = 9 = 32 

 

1 + 3 + 5 + 7 = 16 = 42 

 

 

A physicist is thus happy, but probably not a mathematician. Proof by mathematical induction 
would please a mathematician. You assume it is true for the nth case and demonstrate that it 
follows that it is true for the (n+1)th case. Finally, when you show it is true for the 1st case, then 
it follows that it is true for all n. We will leave mathematical induction for you to try if you want. 
 
Here is where we left off. 
 

 
1

1 3 5 ... (2 1)
2

cm

x
x n

n


= + + + + −  

 
21 3 5 ... (2 1)n n+ + + + − =  

 
Using the formula for the sum of odd numbers, 
 

  21 1
1 3 5 ... (2 1)

2 2
cm

x x
x n n

n n

 
 = + + + + − =    

 
2

2 2
cm

n x x
x n

n

 
= =  

 
But n x L =  . Therefore, 

 

2
cm

L
x =  
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Method 4. Calculus.  

 
 

2 2 2 2

0 0
1 0

1 1 1 1 1 1 0 1

2 2 2 2 2

L
n L L

cm i i

i

M x L L L
x m x xdm x dx xdx

M M M L L L L L=

 
= → = = = = − = = 

 
     

 
I4. Conservation of Momentum. We assume in this chapter that we are talking about linear 
momentum, because there is another type of momentum called angular momentum. We will 
study angular momentum in another chapter. Start below with our key equation for the center 
of mass. 

1 1 2 2 3 3 1 1 2 2 3 3

1 2 3

... ...

...

n n n n
cm

n

m r m r m r m r m r m r m r m r
r

m m m m M

+ + + + + + + +
= =

+ + + +
 

 
The velocity of the center of mass is 

 

1 1 2 2 3 3 1 1 2 2 3 3

1 1
( ... ) ( ... )cm

cm n n n n

dr d
v m r m r m r m r m v m v m v m v

dt M dt M
= = + + + + = + + + +  

 
Multiply both sides by M . 

 

1 1 2 2 3 3 ...cm n nMv m v m v m v m v= + + + +  

 

But the right side is the total momentum p . 

 
Therefore, the total momentum can be expressed as below. 

 

cmp Mv=  

 
We see the importance of the center of mass. 

 

If the external forces are zero, then 0ext

d p
F

dt
= =  and the momentum is a constant. 
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An example is given here with two particles 
interacting. The free particles enter an 
interaction zone where only internal forces 
occur, such as a collision. 
 
If they interact with each other in this way 
with no external forces from outside acting 
on them, the total momentum is a constant. 
We can then write conservation of 

momentum as follows. 

before afterp p=  

 
The total momentum for a two-particle system is 

 

1 1 2 2p m v m v= +  

 

Let the velocities before the interaction be represented by 
1u  and 

2u ; let the velocities after 

the interaction be represented by 
1v  and 

2v . Remember “u” is before and “v” is after since “u” 

is before “v” in the alphabet. Conservation of momentum for a two particle system is then 
given by the formula below. 
 

1 1 2 2 1 1 2 2m u m u m v m v+ = +  

 
Conservation of momentum is a powerful conservation law. If you look at all the particles 
together in the universe, there are then no external forces because there is no outside! So we 
can consider conservation of momentum as a general conservation law along with matter-
energy. Considering the entire universe, the sum total of matter-energy cannot be created or 
destroyed. Two Important Conservation Laws, where by energy we include energy due to 
matter (E=mc2). 

 
1) Conservation of Energy,      2)Conservation of Momentum. 

  
In our course, we do not need to worry about converting energy into matter or vice versa. For 
our purposes, energy just means energy such as kinetic energy and potential energy. You can 
add heat energy when friction is involved. 
 

Important Observation. Suppose there are no external forces. Then 
cmtotalp Mv const= =  and 

before afterp p= . If there is no motion initially, then 0cmtotalp Mv const= = = , which means 

cmr const= , i.e., the center of mass does not change. Also 0before afterp p= = . An example is a 

bear standing on ice and throwing a ball, which we do in the next section. 
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I5. Conservation of Momentum and Two Masses.  
 
Problem 1. Figure Skating. This problem is inspired by the photo below. Assume that a 75.0-kg 
male skater is at rest alone on the ice as a 50.0-kg female skates towards him at a speed of 20.0 
km/h. The female skater then jumps on the back of the male skater. What is the speed of the 
combined two skaters just after the collision? Neglect the external forces of friction, which is 
justified since the skaters are on ice. Since gravity is not horizontal, it is no worry. 
 

 
Skating Photo Courtesy Stephen Downes, flickr. License: Attribution-NonCommercial 2.0 

Canadian Figure Skating Championship January 21, 2012, Moncton, New Brunswick  
Skaters Piper Gilles and Paul Poirier. Moncton Coliseum. 

 

Solution. Use conservation of momentum 1 1 2 2 1 1 2 2m u m u m v m v+ = + , where 1 50.0 kgm = , 

1

km
20.0 

h
u = , 2 75.0 kgm = , 2 0u = , and 1 2v v v= = . Find v . 

 

1 1 2 2 1 1 2 2m u m u m v m v+ = +      =>     1 1 1 2( )m u m m v= +      =>     (50.0)(20.0) (50.0 75.0)v= +  

=>   (1000.0) (125.0)v=    =>   1000.0 /125.0 8v = =    =>    
km

8
h

v =   = 
mi

5
h

 = 
m

2.2
s

 = 
ft

7.3
s

 

https://creativecommons.org/licenses/by-nc/2.0/
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Problem 2. Throwing an Object on Ice. A polar bear is throwing a torn ball in the photo below. 
Assume a young 100.0-kg polar bear is standing on a sheet of ice where friction can be 
neglected. Suppose a young bear at rest throws a 6-kg bowling ball out in a horizontal direction 

at 30.0 km/h (19 mi/h). What is the bear’s recoil velocity? Note that 0before afterp p= = . 

 

 
Nanuq Throwing a Ball, Courtesy Tambako The Jaguar, flickr. License: Attribution-NoDerivs 2.0 

 

Use conservation of momentum:     
before afterp p= . 

 

The before momentum 0beforep =  since there are no velocities. Then 0afterp = . 

0 ball ball bear bearm v m v= +      =>     bear bear ball ballm v m v= −      =>     ball ball
bear

bear

m v
v

m
= −  

 
The minus sign means the bear will move in the opposite direction of the ball. 

 
(6 kg)(30.0 km/h) 180 km 18 km 9 km

100.0 kg 100 h 10 h 5 h
bearv = − = − = − = −  

 

km
1.8

h
bearv =  and to the right in the figure. This speed equals 1.1 mi/h = 50 cm/s. 

https://creativecommons.org/licenses/by-nd/2.0/
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I6. Walking on a Boat. The walking on a raft or boat problem is a classic problem involving 
conservation of momentum and analyzing center of mass. 
 

Problem. A 50-kg person initially at rest 
begins walking on an initially stationary 250-
kg raft. The raft begins to drift backwards in 
response to the walking. The small amount 
of friction between the raft and the water 
can be neglected. 
 

(i) Find the velocity raftv  of the raft if the 

person starts to walk with speed 
m

1.2
s

relv =  relative to the raft. 

(ii) If the person starts out a distance Dbefore = 10 m from land, how far Dafter  is the person from 

land after walking towards the land a distance 2.4 mreld =  relative to the raft? 

 
Credit Line: Clipart person in above figure is from a Public Domain US National Park Service sign. 
 
Solution. There are no external forces in the horizontal direction. Therefore, momentum is 
conserved. Note that the total momentum is zero throughout since initially the person and the 
raft are at rest. 
 

(i) Raft Velocity. Conservation of momentum: before afterp p= , where 0beforep =  and 0afterp = . 

 

before afterp p=      =>     0 0 person raftmv Mv+ = +  

 
We have to be careful since as the person walks relative to the raft, the raft is recoiling 
backwards. The velocity of the person relative to the ground is therefore 
 

person rel raftv v v= + , where 0raftv  , meaning the raft velocity is to the left. 

 

0 0 person raftmv Mv+ = +      =>     0 ( )rel raft raftm v v Mv= + +  

 

0 rel raft raftmv mv Mv= + +      =>     0 ( )rel raftmv m M v= + +      =>     ( ) raft relm M v mv+ = −  

 

( )raft rel

m
v v

m M
= −

+
     =>     

50 kg m 50 m 1 m
( )(1.2 ) (1.2 ) (1.2 )
50 kg 250 kg s 300 s 6 s

raftv = − = − = −
+

 

 

m
0.2

s
raftv = −           

m m
(1.2 0.2) 1.0

s s
person rel raftv v v= + = − =  
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(ii) What is the distance from the person to land after walking, i.e., what is Dafter? 
 
Method 1. Conservation of Momentum. We solve the problem like we did above, obtaining 
 

( )raft rel

m
v v

m M
= −

+
 

 

Now we use the fact that 
x

v
t


=


 and write 

 

( )
raft rel

x xm

t m M t

 
= −

 + 
. 

 
The t  components drop out. 

 

( )raft rel

m
x x

m M
 = − 

+
     =>     ( )raft rel

m
x d

m M
 = −

+
 

 
50 50 1

( )(2.4) ( )(2.4) (2.4) 0.4 m
50 250 300 6

raftx = − = − = − = −
+

 

 
The raft moves to the left subtracting from the distance walked on the raft: 

 
2.4 m 0.4 m 2.0 m− =  

 
The person moves 2.0 m to the land. 

 

2.0 mafter beforeD D= −  

 

10 m 2 m 8 mafterD = − =  

 

8 mafterD =  

 
Method 2. Center of Mass. Remember from the last section, when there are no external forces 

and we have a case where 0cmtotalp Mv const= = = . Then since 0cm
cm

dr
v

dt
= = , the center of 

mass point is fixed: 
cmr const= . We have a one-dimension problem with 

 

1 1 2 2

1 2

cm

m x m x
x const

m m

+
= =

+
. 
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Therefore, 
 

1 1 2 2

1 2

0cm

m x m x
x

m m

 + 
 = =

+
 

 

1 1 2 2 0m x m x +  =  

 

( ) 0person rel raft raft raftm d x m x+ +  =  

 

0person rel person raft raft raftm d m x m x+  +  =  

 

( ) 0person rel person raft raftm d m m x+ +  =  

 

( )person raft raft person relm m x m d+  = −  

 

person

raft rel

person raft

m
x d

m m
 = −

+
 

 
50 50 1

(2.4) (2.4) (2.4) 0.4 m
50 250 300 6

raftx = − = − = − = −
+

 

 
The person moves 2.4 m – 0.4 m = 2.0 m towards the land. 

 
The person is finally 10 m – 2 m = 8 m from the land. 

 
We get the same answer as we did for Method 1. 
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I7. Impulse. Newton’s Second Law states that the net applied force is equal to the change in 
momentum. 

d p
F

dt
=  

 
Looking at linear situations, we can write 

dp
F

dt
=  

 
Now we consider a situation where we observe a change of momentum p  over a finite time 

interval t . In this case, we can express the average force F  as 
 

p
F

t


=


. 

 
There is nothing really tricky here. It is similar to an average velocity when looking at an overall 
distance and time: 

x
v

t


=


. 

 
I used to drive from Asheville to Winston-Salem regularly to take my kids to a piano teacher. 
The distance from Asheville to Winston-Salem is about 240 km (150 mi). We would stop at least 
once along the way so it took about 3 hours. The average velocity was 
 

240 km km
80

3 h h

x
v

t


= = =


, which is
mi

50
h

. 

 
The impulse is defined as 

p F t =  . 

 
Courtesy ataelw, flickr. License: Attribution 2.0. 
2011 WTA Rogers Cup, Toronto 
 
However, there is one important distinction: the 
time interval must be very small. That’s why we call 
it “IMPULSE.” 
 
The short time interval when a tennis racket hits the 
ball is a good example. The letter J is often used. 
 

J F t p=  =   

Application: Collision and Safety. 

https://creativecommons.org/licenses/by/2.0/deed.en
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Courtesy perthhdproductions, flickr. License: Attribution 2.0. 

Car Crash, Karrinyup Road, Stirling, Western Australia (WA), taken March 27, 2012. 
 

We will show how impulse is important in analyzing collisions. First, what is the data easily 
obtained for a collision? It is not the time duration of the collision. That happens very fast. The 
easiest observations are the speed and the distance traveled during the collision. We can get 
the speed either from the driver or making a good estimate given the road and witnesses. Let’s 
take a speed of 40.0 km/h (25 mi/h). The distance traveled during impact can be determined 
from the deformation of the car. We will take this distance to be 40.0 cm (16 inches). Now we 
go to work. 
 
We pull out the kinematics formula that has the speeds and distance traveled so we can arrive 
at an average acceleration during the collision. 
 

2 2

02ad v v= −  

 
The bar over the acceleration reminds us that we are calculating an average acceleration in this 

case. The initial speed is 0

km
40.0 

h
v = , and the distance 0.40 md = . It will be convenient to 

have the speed in meters per second. 
 

0

km 1000 m 1 h 10 m 5 m m
40.0 40 40 11.11

h 1 km 3600 s 36 s 18 s s
v =   =  =  =  

 

https://creativecommons.org/licenses/by/2.0/deed.en
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Then, the average acceleration can be determined from 2 2

02ad v v= −  with 0.40 md = , 0v =  

as the car is at rest at the end, and 0

m
11.11 

s
v = . 

 

2 2m
2 (0.40 m) 0 (11.11 )

s
a = −  

 
Note how keeping the dimensions would alert us if we forgot to convert the speed to m/s. 

 
2

2

m
(0.80 m) 123.4 

s
a = −  

 
2

2 2

123.4 m m
 154.3

0.80 m s s
a = − = −  

 
The negative sign indicates deceleration. 

 
The g-force is 

 

2

2

m
154.3 15.7 16

ms
9.8

s

g
a g g= −  = − = −  

 
Typically the absolute magnitude is reported, i.e., the 16 g without the minus sign. 

 
This g-force produces a lot of force on your body! 

 
Elements that go into injury probabilities include the direction of the force and length of time. 
Below is a short table listing some g-forces taken from a big table on Wikipedia. 
 

Example g-force 

Gravitron Amusement Ride 2.5 – 3 g 
Uninhibited Sneezing after Sniffing Ground Pepper 2.9 g 

Space Shuttle (Launch and Reentry) 3 g 

High-g Roller Coasters 3.5 – 6.3 g 

Hearty Greeting Slap on Upper Back 4.1 g 
Top Fuel Drag Racing World Record of 4.4 s over 1/4 mi 4.2 g 

Formula One Racing Car Under Heavy Braking 6.3 g 

Apollo 16 on Reentry 7.19 g 

Maximum g-force Permitted in Russian Mikoyan MiG-35 10 g 

Data from a Longer Table at Wikipedia 
 

https://en.wikipedia.org/wiki/G-force
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We can find the time of the collision from the kinematic formula that has the velocities, the 
distance, and the time. That equation is 

0 0

1
( )

2
x x v v t= + + . 

 
Entering the data, 

 
1 m

0.40 m 0 (11.11 0)
2 s

t= + +  

 
m

0.80 m 11.11
s

t=       =>     
0.80 m

m
11.11

s

t =      =>     0.072 st =  

 
72 millisecondst =  

 
72 mst =  

 

At this point, the impulse concept is important for our analysis: J F t p=  =  . We know p . 

However, an airbag can increase the deceleration time for the driver. Consider p  as a 

constant for the collision. Increasing t  for the driver, decreases the g-force for the driver. The 
product is the impulse, which remains a constant for the analysis. 
 

J F t p const=  =  =  

 

const
F

t
=


     =>     g-force

F const

m t
= =


     =>     g-force

const

t
=


 

 
To apply this formula to our problem, we have a g-force of 16 g for 72 ms. Therefore, 

 
16 72

g-force
(in ms)

g

t


=


, 

 
since when 72 mst = , you get your expected 16 g for the g-force. 

 
We remind ourselves in parentheses that the time interval must be in ms. 

 

Below is a table listing some pairs of values for t  and F  using 
 

16 72 1152
g-force

(in ms) (in ms)

g g

t t


= =
 

. 
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The table uses 
1152

g-force
(in ms)

g

t
=


 to calculate the values. The longer it takes the driver to 

come to a complete stop due to the airbag, the lower the average g-force. 
 

t  Average Force g-force 

72 ms 16 g 
80 ms 14.4 g 

90 ms 12.8 g 

100 ms 11.5 g 

150 ms 7.68 g 
200 ms 5.8 g 

 
You can see that increasing the time interval for the driver to come to a complete stop, can 
significantly decrease the average g-force. 
 
In a collision, it takes the car sensor about 15 ms to decide whether to deploy the airbag or not. 
Once the decision to deploy is made, it can take in additional 20 ms to inflate, i.e., 35 ms after 
impact inflation is completed. By 60 ms, the driver is in contact with the airbag and is pushing 
on the airbag. This contact can last about 35 to 40 ms. We make a running table below of these 
times, which come from the website tristanmac.tripod.com/id8.html. 
 

Time from 
Impact 

Description of 
Event 

0 ms Car Begins its Contact with Tree 

15 ms Sensor Decides to Deploy Airbag 

35 ms Airbag is Finished Inflating 

60 ms Driver in Contact with Airbag 

100 ms Driver Fully Comes to Rest 

Estimate of Airbag Interaction with Driver. 
Data from tristanmac.tripod.com/id8.html. 

 
Consulting the g-force table where 100 mst = , the g-force is 11.5 g. 

 
Since the time is so short, 100 ms, which is 1/10 of a second, the driver will experience an 
average g-force of 10 g for only 1/10 of a second. There is a good chance that a healthy sturdy 
person sitting in a secure position with a seat belt, harness, and airbag may be okay. 
 
Finally, we make an analogy with energy. The second pair below are written in calculus, 
allowing for a variable force. Think of those as areas under the F vs x graph and F vs t graph. 
 

W Fx K= =                 J Ft p= =  

2

1

2 2

2 1

1 1

2 2

x

x
W Fdx K mv mv= =  = −                

2

1
2 1

t

t
J Fdt p mv mv= =  = −  

https://tristanmac.tripod.com/id8.html
https://tristanmac.tripod.com/id8.html

