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Physics I with Calculus, Prof. Ruiz (Doc), UNC-Asheville (1978-2021), DoctorPhys on YouTube 
Chapter H. Conservation of Energy. Prerequisite: Calculus I. Corequisite: Calculus II. 
 
H1. Conservative Forces. One definition we can use for a conservative force is 
 

Definition 1. Conservative Force – a force that acts on a body in such that when the 
body returns to its original position, it has the same kinetic energy it started with. 
 

Two examples are: 
 
 1. Gravity – “What goes up, must come down.” 
 2. Spring – “What goes in, must come out.” 
 
Friction would mess these situations up. So we are considering ideal cases where there is no 
friction. If a ball is tossed straight up in the air and there is no friction, the ball will return to its 
original position with the speed it started with, though now heading downward instead of 

upward. But since the kinetic energy, 21

2
K mv= , involves squaring the speed, the kinetic 

energy is the same at the beginning and end of the trip. 
 
A similar situation occurs with a spring obeying Hooke’s Law with no friction. If you smack a 
mass on a spring so that it has an initial speed to compress the spring, it will return to its initial 
position with the same speed moving outward. In either case, you get back the kinetic energy 
that you started with. Note that with frictional forces we DO NOT get back what we started 
with. Therefore, frictional forces are not conservative. Here is another definition. 
 

Definition 2. Conservative Force – a force such that the work needed to move an object 
from point 1 to point 2 is independent of the path taken. 

 
Let’s check. First take the path straight up, the blue 
path. We need to gently lift the block with a force to 
counteract downward gravity. So our force is upward 
and equal to mg . The work done to move the ball up a 

distance d  is then 
 

blue (cos0 )W Fd mg d mgd= =  = . 

 
For the green path we still lift gently with force mg , 

but now we are at an angle. 
 

green (cos ) [cos(2 )]W mg c mg c  = + +  

 
The angles 2 +  and   are supplementary. 

https://www.youtube.com/user/doctorphys
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Therefore, they have the same cosine. 
 

cos( 2 ) cos( )  + = . 

 
The work along the green path is then 

 

green 2 (cos )W mg c= . 

But (cos )
2

d
c = . Therefore, 

green 2 (cos ) 2
2

d
W mg c mg mgd= = = , 

 
and we have 

 

blue greenW W= . 

 
The work is independent of path. 

 
Now we try a similar calculation with moving a block on a table where there is friction. 

 
We must counteract friction as we move the block. For the 
blue path 
 

blueW Fd mgd= = . 

 
For the green path, note that the friction points opposite to 
our path again. Therefore, we need to apply a force of mg  

along the distance c  two times. 
 

green 2 (cos0 ) 2W mg c mgc =  =  

 
Since 2d c , 
 

blue greenW W . 

 
The work is NOT path independent. 

 
Therefore, frictional forces are not conservative. 
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H2. Potential Energy. 
 
1. Gravity. We first consider the conservative force of gravity. If we do work to gently lift up a 
ball a height h , we do work in the amount of 
 

W mgh= . 

 
As we hold the ball up there, we know that if we release it, gravity will do the same work in 
bringing the ball down. The ball will speed up as it falls and we will find 
 

21

2
W mgh mv= =  

 
by the Work-Energy Theorem. 

 
When we are holding the ball up there before release, we can say we have potential energy and 
when we release the ball, that potential energy is transformed into kinetic energy. Before we 
drop the ball, the energy is all potential. And after the ball falls, just before it hits the ground, 
the energy is all kinetic. 
 

beforeE mgh=  

 

2

after

1

2
E mv=  

 
The energy before and after are equal. We say energy is conserved. We have a new principle, 
the conservation of energy, which is the title of our chapter. 
 

before afterE E=  

 
When the ball is on its way down, it has a combination of some potential energy and some 
kinetic. Therefore, in general, we can write the total energy as a sum. 
 

21

2
E mv mgh= +  

 

Let the kinetic energy be represented by 21

2
K mv=  and the potential energy be designated as 

U mgh= . Then, the total energy is given by as follows. 

 
E K U= +  
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U mgh=  

 
Since the potential energy is intimately related to the conservative force, we would like a 
relationship between the force and the potential energy. Choosing up as the positive direction 
with coordinate z and the ground being z = 0. Then, the force due to gravity is 
 

F mg= − . 

 
The potential energy we defined above is 

 
U mgz= . 

 
How are they related? 

 
The answer is negative the derivative. 

 
 

 
 
2. Spring. Next is the spring that obeys Hooke’s Law. 

With  gravity, we picked up a ball and let it go. With the spring we pull the block in the figure 
and let it go. We saw in the previous chapter that the work is given by the area under the 
Hooke’s Law graph. 

21

2
W kx=  

 
By analogy with gravity, this work is the potential energy for the spring. 
 

21

2
U kx=  

 
Do we get the spring force if we take negative the derivative? Yes! 
 

2 21 1 1
( ) (2 )
2 2 2

dU d d
F kx k x k x kx

dx dx dx
= − = − = − = − = −  

dU
F

dz
= −
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H3. Conservation of Energy. 
 
1. Conservative Forces. For conservative forces we can write the conservation of energy as 
 

constE K U= + = , 
 

where const  stands for constant. 
 

Therefore changes in total energy E  are zero. 
 

0E K U =  + =  
 

The changes in kinetic energy and potential energy are opposite each other: 
 

K U = −      and     U K = − . 
 

Since the energy is constant we can write for two different locations 
 

1 2E E=      or     before afterE E= ,     and 

 

1 1 2 2K U K U+ = + , 

 

before before after afterK U K U+ = + . 

 
These equations prove very helpful in solving problems, as you will see. 
 
2. Nonconservative Forces. Suppose we have a problem with friction. Friction always works 
against you, so the work is negative. 
 

0fW fd= −   

 
We need to put this component in by hand. Here is how I do it. 
 

1 1 2 2K U fd K U+ − = +  

 
Some of the energy goes into heat as the surfaces rub. This transfer of energy into heat means 
that the available energy for kinetic and potential at location 2 is reduced. But this frictional 
work goes into heat. When heat is considered, the total energy is still conserved! 
 
One final comment. There used to be two conservations laws: one for energy and one for 

matter. Since Einstein showed us that energy and matter are equivalent in the form 2E mc= , 
we can generalize our conservation of energy to the conservation of matter-energy. 
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H4. Pendulum.  
Adaptation of a Figure 
Courtesy Chetvorno, Wikimedia 
Released into the Public Domain 
 
Pull back the bob (mass 2 kgm= ) back on a pendulum 

of length 1.5 ml =  so that the angle is 90 =  . 
Release the bob from rest. 
 
(i) What is the speed when the bob reaches the bottom 
of the pendulum? 
 
(ii) Derive a general formula for the speed at the 
bottom if the bob is released from rest at  . 
 

 
(i) We do not need to draw a force diagram in this case. The conservation of energy will do the 
trick. We are always free to pick our reference. I will pick the zero reference height to be at the 
bottom of the pendulum, the equilibrium position. 
 
The initial height of release is then 

h l= . 
 

The equations for the conservation of energy can be written as 
 

before before after afterK U K U+ = +  

 

21
0 0

2
mgl mv+ = +  

Solve for the speed v . 

21

2
mv mgl=  

 

21

2
v gl=      =>     2 2v gl=  

 

2v gl=  

 
The answer is independent of the mass. It depends on the pendulum length and planet. 
 

2

2 2

m m m
2(9.8 )(1.5 m) 29.4 5.4

s s s
v = = =  



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

(ii) General formula for the speed at the bottom if the bob is released from rest at  . 
 
The initial height of release is now 
 

cos (1 cos )h l l l = − = − . 

 
The equations for the conservation of energy can be written as 
 

before before after afterK U K U+ = +  

 

21
0 (1 cos ) 0

2
mgl mv+ − = +  

 
Solve for the speed v . 

21
(1 cos )

2
mv mgl = −  

 

21
(1 cos )

2
mv mgl = −  

 
2 2 (1 cos )v gl = −  

 

2 (1 cos )v gl = −  

 
Checks. If you release from 0 =  , you get 

 

 2 (1 cos ) 2 (1 cos0 ) 2 (1 1) 0v gl gl gl= − = −  = − =  

 
If you release from 90 =  , you get 
 

2 (1 cos ) 2 (1 cos90 ) 2 (1 0) 2v gl gl gl gl= − = −  = − = . 

 
But this result is the same for falling straight down a distance h l= : 
 

21

2
mgl mv=      =>     21

2
gl v=      =>     22gl v=      =>     2v gl= . 

 
The falling in an arc does not change the result since the pendulum rope or cable does not do 
any work on the bob. The reason the rope does not work is that the tension in the rope acts 
perpendicular to the direction of the speed. Therefore, the work for each small movement s  

along the arclength is (cos90 ) 0ropeW T s =   = . The rope serves only to change the direction. 
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H5. Pendulum and Nail.  
Baseball Courtesy Tage Olsin CC-BY-SA-2.0 
 
I encountered this problem in a 1978 edition of the 
legendary Halliday and Resnick text during my first year 
of teaching that same year. It was their third edition. I 
had studied in college with their 2nd edition. 
 
A bob on a pendulum of length l  swings down from 90°. 
The rope of the pendulum encounters a nail when the 
bob reaches its lowest point. The lower portion of the 
rope then swings in a smaller circle. (i) Where should the 
nail be placed from the ceiling so that the bob released 
from rest at the ceiling just reaches the apex on the 

smaller circle. If the nail is any higher, the bob will not reach the apex. Give you answer as a 
fraction of the pendulum length l . (ii) Find the simplest formula for the velocity v  at the apex 
of the smaller circle. 

 
(i) What is d ? We introduce the radius r  of the 
smaller circle and relate it to the pendulum length l  
and the distance d  the nail is from the ceiling. We 
choose the reference to be zero at the lowest point 
of the pendulum. Conservation of energy gives 
 

before before after afterK U K U+ = + , 

 
where “before” will represent the ball at the top about to be released from the ceiling and 
“after” is the location at the apex of the smaller circle. 
 

21
0 [2( )]

2
mgl mv mg l d+ = + −  

But we immediately encounter a difficulty. How do we get rid of the velocity v   if we are to 
solve for d . Here is where we use the information that the bob just reaches the apex of the 
smaller circle. Now we could use a force diagram. 

 
At the apex, the two forces on the bob are the tension in 
the rope and gravity. 
 

2v
F T mg ma m

r
= + = =  

For the bob to just make it to the apex, the tension will be zero: 0T = , giving 
2v

mg m
r

= . From 

the figure you can see that r l d= − . Therefore, 2 / ( )mg mv l d= − . 

https://creativecommons.org/licenses/by-sa/2.0/deed.en
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Our two main equations are now 
 

21
[2( )]

2
mgl mv mg l d= + − , 

 
2mv

mg
l d

=
−

. 

 
Rearranging things slightly, we obtain 

 

21
2 ( )

2
mgl mv mg l d= + − , 

21 1
( )

2 2
mv mg l d= − . 

 

Substitute 21 1
( )

2 2
mv mg l d= −  into the first equation. 

 
1

( ) 2 ( )
2

mgl mg l d mg l d= − + − , 

 
5

( )
2

mgl mg l d= −  

  
Solve for d  in terms of l  as we were instructed. 

 
The masses cancel and so does gravity. 

 
5

( )
2

l l d= −  

 
2

5
l l d= −  

 
2

5
d l l= −  

 

3

5
d l=  

 
Also acceptable is the answer 0.6d l= . 
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(ii) Find the simplest formula for the velocity v  at the apex of the smaller circle. We have two 
equations the contain the velocity v . 
 

21
2 ( )

2
mgl mv mg l d= + − , 

 

21 1
( )

2 2
mv mg l d= − . 

 
The second equation looks simpler. 

 

21 1
( )

2 2
mv mg l d= −  

 
2 ( )v g l d= −  

 

We know from part (i) that 
3

5
d l= . 

 

2 3
( )

5
v g l l= −  

 

2 2
( )
5

v g l=  

 

2 2

5
v gl=  

 

2

5
v gl=  
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H6. Sliding Off Ice Hemisphere. Here is another 
problem from my first year of teaching, where I used 
the 3rd edition of Halliday and Resnick. It has the 
green cover in the photo shown at the left. 
 
A boy is sitting on an ice-mound hemisphere (or a 
hemisphere of packed snow) with radius R . At first, 
the boy is sitting at the top of the mound of ice-
snow; then the boy starts to slide down, with friction 
taken to be zero. At some point the boy leaves the 
mound of snow. 
 
The original problem only asked for (i) below, but I 
am adding two additional questions. No numbers 
were given in the original problem. 
 
(i) Find the height h  from the ground where the boy 
loses contact with the snow. 
 
(ii) Find the angle with respect to the vertical where 
the boy leaves the mound of snow. 
 
(iii) Find the speed at which the child leaves the 
snow. 

 
(i) Find h . The key here is that we need a force 
diagram because when the boy leaves the ice, 
the normal force N  is zero. There is no more 
contact between the boy and the ice. 
 
This technique of conservation of energy and a 
force diagram is one we saw in the previous 
section. It is nice how physics builds on prior 

knowledge and methods. In this problem we again get to review our force diagram type of 
problem with Newton’s Second Law with circular motion, as well as use conservation of energy. 
 
We will start first with the force diagram: 

2

cos
v

mg N m
R

 − = , 

where 0N = . 
 

The result is 
2

cos
v

mg m
R

 = . 
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For conservation of energy, pick the point at the top as location 1 and where the boy flies off 
the mound as location 2. Refer to the above figure. 
 

21
0

2
mgR mv mgh+ = +  

 
From the geometry, we can substitute cosh R =  in the above equation. The result is 
 

21
cos

2
mgR mv mgR = +  

 
Now, here is a trick I like to use in situations like these. We have two main equations. 
 

2

cos
v

mg m
R

 =  

 

21
cos

2
mgR mv mgR = +  

 

I like to get both equations with 2mv  by multiplying accordingly for each equation. 
 

2cosmgR mv =  

 
22 2 cosmgR mv mgR = +  

 

Next I substitute the 2 cosmv mgR =  from the first equation into the second. 

 
2 cos 2 cosmgR mgR mgR = +  

 
At this point, we can divide out the mgR  combination. 

 
2 cos 2cos = +  

 
It looks like we are going to solve for the angle first. 

 
2 3cos=  

 
2

cos
3

 =  

 
48.19 =   
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We know that cosh R = , so the height follows readily. 
 
cosh R =  
 

Since 
2

cos
3

 = , we do not even need the actual angle to find h . 

 
2

cos
3

h R R= =   

 

2

3
h R=  

 
(ii) The Angle  . We already found the angle in our work for Part (i). 
 

48.19 =   
 

(iii) The Velocity v . We can look back and pick out a formula with v . Here is one below. 
 

2cosmgR mv =  

 

Since 
2

cos
3

 =  and the mass divides out, we quickly obtain 

22

3
gR v=  

 

2

3

gR
v =  

 
Just to get an idea with some numbers, take a radius 1.25 mR = . Then 
 

2 2 (9.8) (1.25) m
8.167 2.86 

3 3 s

gR
v

 
= = = =  

 

This speed is also equal to 
km mi

10.3 6.40
h h

= . 
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H7. Loop-the-Loop. The classic loop-the-loop problem is very popular and an excellent 
application to a real-life problem. Below is the “Olympia Looping” ride in . 
 

Olympia Looping, Photo Courtesy Oliver Mallich, flickr, License Attribution-NoDerivs 2.0 
Oktoberfest, Munich, Bavaria, Germany, October 2, 2006 

 
The “Olympia Looping” is a portable roller coaster! “It is the largest portable roller coaster in 
the world, and the only one with five inversions. It appears at many carnivals in Germany, most 
notably Oktoberfest, where it made its debut in 1989.” Wikipedia 
 
The roller coaster is also known as “Munich Looping.” Notice the inverted teardrop shape 
rather than a completely circular path. This deviation from an exact circle is important as we 
will show that a purely circular structure has dangerous g-forces at the bottom. The bottom of 
the loops in the above photo are not horizontal at the bottom. This feature allows for reduced 
g-forces at the bottom where the coaster is zipping along pretty fast. 
 
We are going to analyze the perfect circular loop with no friction in this section. 
 

https://creativecommons.org/licenses/by-nd/2.0/
https://en.wikipedia.org/wiki/Oktoberfest
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Problem: Loop-the-Loop. A roller coaster 
rolls down from a height h  and enters a 
loop-the-loop at ground level. The loop is a 
circle with radius R . (i) What must the 
initial height h  be for the coaster so that 
when it reaches the top of the loop-the-
loop there is no normal force on the 
coaster. The coaster can be taken to have 
tiny wheels. Later in our course, I will show 
you that a car with tiny wheels rolls like a 
sliding frictionless mass. So, for all practical 
purposes, you are doing the equivalent 
problem for a sliding block with no friction. 
(ii) Give the g-force at the bottom of the loop. 
 
Solution: Loop-the-Loop. (i) Find h . We start with the top location of the loop. 

 
2

T
T

v
N mg m

R
+ =  

 

The normal force is zero at this point: 0TN = , giving 

 
2

Tvmg m
R

=  

 
Conservation of energy from the very beginning to 
this point gives 

 

21
0 (2 )

2
Tmgh mv mg R+ = + , 

 
where the kinetic energy at the very start is zero with height h . 

 
I like to get rid of the denominators in each equation. 
 

2

Tvmg m
R

=      =>     2

TmgR mv=  

 

21
(2 )

2
Tmgh mv mg R= +      =>     22 2 (2 )Tmgh mv mg R= +  

 

Next comes substituting 2

Tmv mgR=  into 22 2 (2 )Tmgh mv mg R= + . 
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2 2 (2 )mgh mgR mg R= +  

 
The mg  divides out. 

 
2 2(2 )h R R= +      =>     2 4h R R= +  

 
2 5h R=  

 

5

2
h R=  

 

(ii) Find BN  at the bottom. The normal gives you what a scale underneath you at the bottom 

would read. For the bottom location, the force diagram leads to 
 

2

B
B

v
N mg m

R
− = . 

 
Conservation of energy gives 
 

21
0 0

2
Bmgh mv+ = + . 

 

But we know from (i) that 
5

2
h R= , 

 
Our two equations with this substitution in the second equation are then 

 
2

B
B

v
N mg m

R
− =  

 

25 1

2 2
Bmg R mv=  

We want to solve for BN . From the first equation, 
2

B
B

v
N m mg

R
= + . 

The second equation 25 1

2 2
Bmg R mv=  can be put in the form 

2

5 Bv
mg m

R
= . Then 

2

5B
B

v
N m mg mg mg

R
= + = + . 

 

6BN mg=      This is 6g !!! 
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Therefore, they do not construct a perfectly circular shape at the bottom. See below. The loops 
have inverted tear-drop shapes. 

Olympia Looping, Photo Courtesy Bjs, Wikimedia, Dedicated to the Public Domain 
Oktoberfest, Munich, Bavaria, Germany, September 2005 

 
Here is an additional problem for you. Find the 
force at point Q, using our previous result that 

5

2
h R= . See if you get the answer 

3QF mgi mg j= − − , 

 
a g-force of 3g to the center and 1g down. 

 

The magnitude of the total is 2 23 1 10 3.16Qa g= + = = . What is the direction? 

 

The answer is 1 1
tan 18

3
 −= =  , South of due West. 
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H8. The Trampoline. 
 

 
 

Courtesy henry…, flickr. License: Attribution-NonCommercial-NoDerivs 2.0 
 

Problem. A person with mass m  is jumping on a trampoline, landing on its center each time. 
Assume that the trampoline obeys Hooke’s Law with a spring constant k  in its center. What is 
the maximum depression x  of the trampoline measured downward from the trampoline’s flat 
equilibrium surface if the person falls from a maximum height h  above the trampoline on every 
bounce? 
 

Solution. 

top top bottom bottomK U K U+ = +  

 

21
0 ( ) 0

2
mg h x kx+ + = +  

Solve for x . 

21
( )

2
mg h x kx+ =  

21

2
mgh mgx kx+ =      =>     22 2mgh mgx kx+ =      =>     2 2 2 0kx mgx mgh− − =  

We have a quadratic equation. 

https://creativecommons.org/licenses/by-nc-nd/2.0/
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2 2 2 0kx mgx mgh− − =  

 
A quadratic equation of the form 

 
2 0ax bx c+ + =  

 
has solutions 

 
2 4

2

b b ac

a

−  −
. 

 
For our equation a k= , 2b mg= − , and 2c mgh= − . 

 
The two solutions in our case are then 

 
2 4

2

b b ac

a

−  −
     =>     

2( 2 ) ( 2 ) 4( )( 2 )

2

mg mg k mgh

k

− −  − − −
 

 

=>     
22 (2 ) 4( )(2 )

2

mg mg k mgh

k

 +
. 

 
Since 0x  , we want 

 
22 (2 ) 4( )(2 )

2

mg mg k mgh
x

k

+ +
=      =>     

2( ) ( )(2 )mg mg k mgh
x

k

+ +
=  

 

=>     

2
1

kh
mg mg

mg
x

k

+ +

=  

 

2
1 1

mg kh
x

k mg

 
= + + 

 
 

 
Is the answer reasonable? 

 

The units check out, but when 0h = , why is 
2mg

x
k

=  and not 
mg

x
k

= ? 

 
I will address this issue in the accompanying video lecture at 

https://www.youtube.com/doctorphys. 

https://www.youtube.com/doctorphys

