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Physics I with Calculus, Prof. Ruiz (Doc), UNC-Asheville (1978-2021), DoctorPhys on YouTube 
Chapter G. Work. Prerequisite: Calculus I. Corequisite: Calculus II. 
 
Before starting our new topic of work, let’s review friction. 
 
G1. Static Friction: Holding a Block Up Against a Wall. This problem was inspired by an analysis 
made by Rhett Allain, Associate Professor of Physics at Southeastern Louisiana University 
(2002). He calls it “The Surprisingly Cool Physics of Pushing a Block Against a Wall.” Below is my 
approach to this neat problem. Remember that with the “Method of Science” scientists have 
their own unique ways in approaching problems, but in the end, they should get the same 
results. Science is reproducible. So we will obtain the same results in our analysis. 
 

See the left figure for our first 
two steps. We want the 
minimum force F to keep the 
block from falling. Therefore, 
the frictional force will point 
upward. 
 
(i) Sketch. A sketch is better 
than nothing. I did a free 
hand sketch. 

 
(ii) Force Diagram. Once again, I draw with free hand. Your teacher will usually set guidelines on 
homework. For introductory physics, a neat figure drawn by hand typically suffices. Never cross 
out on homework. Next comes Newton’s Second Law. 
 
(iii) Newton’s Second Law. The acceleration is zero. We have static equilibrium. Choose “+” in 
the usual way for a horizontal (x) and vertical (y) coordinate system. 
 

cos 0xF F N= − =  

 

sin 0yF F f mg= + − =  

 
We are now ready for our friction equation, which I like to call an auxiliary equation. Since we 
want the condition where the mass is just above to slide down, we have 
 

sf N= . 

 
Note that we are not trying to slide the block up the incline. Instead, we are pushing with the 
minimum force needed to keep the block from sliding down the wall. The result is an upward 
frictional force. Our three equations are listed again below. We are ready for the last phase. 
 

https://www.youtube.com/user/doctorphys
https://www.wired.com/story/the-surprisingly-cool-physics-of-pushing-a-block-against-a-wall/
https://www.wired.com/author/rhett-allain/
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(iv) Solve. 
cos 0F N − =  

 
sin 0F f mg + − =  

 

sf N=  

 
As mentioned in the last chapter, I like to start with the bottom equation and work up. So I look 

at sf N=  and see I need N . Then I note that the simplest expression for N  is found in the 

first equation, where I obtain cosN F = . Therefore, we get 
 

coss sf N F  = = . 

 
Now we substitute this expression for the friction in the middle equation sin 0F f mg + − = .  

 

sin cos 0sF F mg  + − =   

 
We want to solve for the force F . 
 

sin cos 0sF F mg  + − =      =>     (sin cos ) 0sF mg  + − =  

 

(sin cos )sF mg  + =  

 

( )
sin coss

mg
F 

  
=

+
 

 

A quick check is taking 90 =  . The force is then (90 )
sin90 cos90 1 0s s

mg mg
F mg

 
 = = =

+  + 
. 

The applied force is directly upward and we are holding the mass up against gravity. We would 
like to find the best angle   to achieve the minimum force needed to keep the mass from 
moving. We can do the standard max-min problem from calculus by setting the derivative equal 
to zero. 

( )
0

dF

d




= . 

 
But this derivative looks messy. For the minimum ( )F   however, the denominator will be a 

maximum. So we can do the max-min problem on the denominator. 
 

(sin cos ) 0s

d

d
  


+ =  
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cos sin 0s  − =      =>     cos sins  =      =>     
sin

1
cos

s





=  

 

1 tans =  

 

0

1
tan

s




=  

 
We include the subscript “0” to remind us that this angle is special, the angle that gives the 
minimum force. 
 

min 0

0 0

( )
sin coss

mg
F F 

  
= =

+
 

 

The table below gives the best angle 0  for some values of s  and the associated force 0( )F  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As 0s →  we have 1/ s → , 1

0 tan (1/ ) / 2 90s  −= → =  , and minF mg→ . The best deal 

is to simply exert an upward force to hold up the mass against gravity. With 90° you do not 
waste any effort with a force component towards the wall since pushing against the wall does 
not help you if there is no friction. 
 

As s  increases, 0  decreases. For s →  we can consider the block glued to the wall. Then 

1/ 0s → , the angle 1

0 tan (1/ ) 0s −= →   and min 0F → . If there is a finite and large s , you 

gently push towards the wall. Your angle will be 0 0    and your force will be small, min 0F  . 

s  1

0

1
tan

s




−=  0( )F   in N 0( ) / ( )F mg  

0.00 90.0° 9.80 1.000 

0.10 84.3° 9.75 0.995 

0.20 78.7° 9.61 0.981 

0.30 73.3° 9.39 0.958 
0.40 68.2° 9.10 0.928 

0.50 63.4° 8.77 0.894 

0.60 59.0° 8.40 0.857 

0.70 55.0° 8.03 0.819 
0.80 51.3° 7.65 0.781 

0.90 48.0° 7.28 0.743 

1.00 45.0° 6.93 0.707 

1.10 42.3° 6.59 0.673 
1.20 39.8° 6.27 0.640 
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We can express the minimum force solely in terms of the coefficient of static friction s . I will 

use a trick that I learned from a physics friend long ago. The trick is to construct a right triangle 

so that 
0

1
tan

s




= . 

From the figure at the left we can get 0sin  and 

0cos . 

0
2

1
sin

1 s




=
+

     0
2

cos
1

s

s





=

+
 

 

min

0 0sin coss

mg
F

  
=

+
 

 

min

2 2

1

1 1

s
s

s s

mg
F




 

=

+
+ +

 

 

Multiply top and bottom by 21 s+ . 

 
2

min 2

1

1

s

s

F mg




+
=

+
 

 

min
21 s

mg
F


=

+
          0

1
tan

s




=  

 

Is this answer reasonable? Consider approaching no friction. Then 0s →  and 

 

min
20 0

lim lim
1k k

s

mg
F mg

  → →
= =

+
, 

with the angle becoming 
 

1 1

0
0 0

1
lim lim tan lim tan 90

s s x
s

x
 




− −

→ → →
= = =  . 

 
We are holding the mass straight up and not wasting any force pushing into the wall. Let’s again 

consider the mass nailed to the wall, i.e., s → . 

 

min
2

lim lim 0
1k k

s

mg
F

  → →
= =

+
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As we found earlier, no force is needed. The angle is really irrelevant, but the formula gives 
 

1 1

0
0

1
lim lim tan limtan 0
s s x

s

x
 




− −

→ → →
= = =  . 

 
However, if the mass was a little loose, you would push gently straight towards the wall. 
 
Professor Allain gives nice plots of the force as a function for all angles with different values of 

s  using Python. 

( )
sin coss

mg
F 

  
=

+
 

 
I used a spreadsheet to obtain a few plots. Eyeball the minima and compare your estimates 
with the above table. 

 
Observe how all the results agree at 90°. You are then holding the block up by its weight. 
 

90 90
lim ( ) lim

sin cos sin90 cos90 1 0s s s

mg mg mg
F mg

 


    →  → 
= = = =

+ +  + 
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G2. Kinetic Friction: Dragging a Sled Across the Snow. Constant pulling with constant speed. 
 

 
Colin and Mom, Courtesy Patrick W., flickr. License: Attribution 2.0 Generic. 

Photo taken March 5, 2006. Slight contrast enhancement on the photo. 
 
 
 
 
 
 
 
 
 
 

Choose directions as usual with an x-y coordinate system. Right is then positive “x” and up is 
positive “y”. 

 

cos 0xF F f ma= − = =  

 

sin 0yF F N mg= + − =  

 
We have three equations when we add the friction equation. The three equations are below. 

https://creativecommons.org/licenses/by/2.0/deed.en
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cos 0F f − =  

 
sin 0F N mg + − =  

 

kf N=  

 

Let’s solve for the force F . Start with kf N=  and use the second equation to get the normal 

force sinN mg F = −  for substitution into our friction equation. 

 

( sin )k kf N mg F  = = −  

 
Then place this force into the top equation. 
 

cos ( sin ) 0kF mg F  − − =  

 
Continue with the solution for F . 
 

(cos sin ) 0k kF F mg   + − =  

 

(cos sin )k kF mg   + =  

 

( )
cos sin

k

k

mg
F




  
=

+
 

 
What is the best angle to apply the force F ? Pulling up some eases the frictional force since 

the normal force is reduced. We can set the derivative to zero:  
( )

0
dF

d




= . But as before, we 

rather find the extremum for the denominator. A max for the denominator will give a min for 
the force. 
 

(cos sin )
0kd

d

  



+
=  

 

sin cos 0k  − + =  

 

cos sink  =  

 

0tan k =  

 
We include the subscript to signal that we have a special angle since the generic variable   
appears in the force equation. The above special angle will give the case for minimal force. 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

 

min 0

0 0

( )
cos sin

k

k

mg
F F




  
= =

+
 

 

We use the triangle trick to get the trig functions in terms of k . We construct a right triangle 

so that we have an angle with tangent 0tan k = . 

 

0
2

1
cos

1 k




=
+

 

 

0
2

sin
1

k

k





=

+
 

 

min

2 2

1

1 1

k

k
k

k k

mg
F






 

=

+
+ +

 

 

Multiply top and bottom by 21 k+ . 

 
2

min 2

1

1

k k

k

mg
F

 



+
=

+
 

 

min
21

k

k

mg
F




=

+
          0tan k =  

 
Compare these result to the problem in the previous section. 

 
Colin and Mom, Courtesy Patrick W., flickr. 
License: Attribution 2.0 Generic. 
Photo taken March 5, 2006. Slight contrast 
enhancement on photo. 
 
Take a sled with a child on it to be 150.0 N 
(33.7 lb) and the coefficient of kinetic friction 
for this sled on snow to be 0.1. What is the 
best angle to pull at and what is the force you 
need? 
 

1 1

0 tan tan 0.1 5.7k − −= = =   

https://creativecommons.org/licenses/by/2.0/deed.en
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min
2 2

0.1 (150 N) 15
N 14.9 N 15 N

1.011 1 0.1

k

k

mg
F






= = = = =

+ +
 

 
But mom finds the small angle 5.7° too awkward since she would have to stoop down too 
much. So she uses an angle like we see in the above photo, an angle more like 40°. To find the 
force now, we go to the general force equation 
 

( )
cos sin

k

k

mg
F




  
=

+
 

 

and insert the values 0.1k = , 150.0 Nmg = , and 40 =  . 

 
0.1(150 N) 15

N 18.0653 N
cos sin cos40 0.1 sin 40 0.76604 0.06428

k

k

mg
F



  
= = = =

+ +   +
 

 
18 NF =  
 

This value is not much greater than the minimum case of min 15 NF =  and it is a lot easier to 

pull at this angle. 
 

G3. Work. We will define a new physical quantity called work in this section. We will arrive at 
this physical quantity by considering hiring workers to push merchandise in boxes across a 
warehouse floor to a loading area where a large truck awaits. 
 

Push, Courtesy ditch Mingo, flickr 
License: Attribution-NonCommercial-NoDerivs 
2.0 Generic (CC BY-NC-ND 2.0) 
 
At the left is a possible worker. By the way, our 
definition will not matter if the merchandise is 
on wheels or not. Suppose we want to pay our 
employees for the actual work they do? What is 
this work? 
 
Two characteristics emerge: 

 
1. The Force F . Workers pushing more massive objects should be paid more. 
2. The Distance d . Workers pushing greater distances should be paid more. 
 

https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
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Some items in the warehouse are farther from the loading dock and so there is greater distance 
d  to cover for these. Taking both of these features into consideration, it makes sense to define 
work as the product of the force and the distance. 
 

 
 
Our new physical quantity is work. The following definition applies to one dimension where the 
force is in the direction of the motion – the most simple pushing of objects. 
 

W Fd=  
 
The dimensions are newtons times meters. We name this combination after the scientist James 
Joule (1818-1889). Joule was an English physicist that related mechanical work to heat energy. 
We will study heat later. Spelling out the units, the definition of the joule is 
 

joule newton meter=  , 

 
where we use lowercase “j” just as we do for newton. For the symbol, i.e., the abbreviated 
form, we have 
 

J N m=  , 
 

where uppercase is used for the joule and newton. If you want to express J in terms of the 
three fundamental quantities of length, time, and mass, we can use F ma=  to first express N . 
 

2

m
N kg

s
=  . 

Then the joule is 

2

m
J N m kg m

s
=  =   , 

 
2

2

m
J kg

s
=  . 

 
In the cgs system we have dynes (force) times centimeters (distance), which is defined as the 
erg.  
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erg dyne centimeter=   

 
In the British system, we have pounds times feet, which is often referred to as 
 

lb ft  or ft lb . 
 
With the notation of dimensional analysis, we can write 
 

[distance] L= , [time] T= , and [mass] M= . 

 
Then, the dimensions of work can be expressed as 

2

2 2
[ ] [ ][ ] [ ][ ] [ ][ ][ ]

L L
W F d ma d m a d M L M

T T
= = = =   =  , 

2 2[ ]W ML T −= . 

 
In an ideal scenario, we can pay our workers by the work they accomplish in joules rather than 
by the hour. Consider again our definition of work. 
 

W F d=   
 
There are two immediate ways to see when no work is done. 
 

Case 1. Walking like a zombie pushing nothing: 0F =  leading to 0 0W F d d=  =  = . 
Case 2. Pushing an object stuck up against a wall: 0d =  leading to 0 0W F d F=  =  = . 
 

The definition of work when the force is applied at an angle involves taking the component of 
the force along the direction of the motion. 

 
The definition for work is then given by 
 

cosW Fd = . 
 

The force and distance are vectors, i.e., they have 
magnitudes and directions. However, the work is a scalar. 
There is no direction intrinsic to work itself. We make the 
following definition for combining two vectors to form a 

scalar. It is called the vector dot product or simply dot product and we write it as 
 

cosW F d Fd =    
 
Our ideal model for work breaks down somewhat since you may be able to push boxes more 
easily by pushing up a little to reduce the frictional force between the bottom of the crate and 
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the ground. You would get no credit for this clever technique because the strict physics 
definition gives maximum work credit when 0 =   and the greater force is used. 
 
G4. Kinetic Energy. We introduce another new physical quantity in this section. This new 
quantity follows naturally by applying the definition of work with Newton’s Second Law of 
Motion. We will provide three methods, but I like the second one the best for this course. 
 
Method 1. Imagine an object in outer space at rest. Apply a constant force F  and the object 
starts to accelerate according to Newton’s Second Law. The velocity increases with constant 
acceleration. Then, at some point no longer apply the force. The mass will then continue at its 
final speed v  achieved at the end of the acceleration phase. Let the force F  be applied moving 
the object a distance equal to x . The work is 
 

W Fx= . 
 

We then introduce Newton’s Law, F ma= . During the constant acceleration phase, the object 

accelerates according to the equation 0v v v
a

t t

−
= =  since it started from rest. Also, the 

distance traveled is given by 0

1 1
( )

2 2
x v v t vt= + =  since 0 0v = . Combining these relations, we 

find 

21 1

2 2

v
W Fx max m vt mv

t
= = =   =  

 
The work that we did has transformed into energy in the motion. The moving mass can crash 
into something later doing work on something else. This energy of motion is called kinetic 
energy and is represented by K . 

21

2
K mv=  

 
Method 2. Let’s redo the one-dimensional derivation where the mass is initially traveling at 

speed 0v . Then, we can use the kinematic equations 

 

0v v at= + , 

 

0 0

1
( )

2
x x v v t= + + . 

 

We will define our reference position so 0 0x = . Then we have the following equations: 

 

0v v
a

t

−
=      and     0

1
( )

2
x v v t= + . 
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2 20
0 0 0 0

1 1 1
( ) ( ) ( ) ( )( ) ( )

2 2 2

v v
W Fx ma x m v v t m v v v v m v v

t

−
= = =   + = − + = −  

 

2 2

0

1 1

2 2
W mv mv= −  

 
The work done is equal to the change in kinetic energy! The physical quantity 

 

21

2
K mv=  

 
again emerges naturally! 

 
Method 3. Integral Calculus. A corequisite for this course is taking Calculus II concurrently. 
Therefore, you might not have gotten far enough in your course to understand this method. If 
not, no problem. The main method I find most suitable for this course is Method 2, which we 
just finished. It uses the kinematic formulas we developed earlier. However, the calculus 
method has some increased powers as we do not have to assume a constant force and 
associated constant acceleration. Our kinematic equations will not help here since the force is 
not constant and therefore our kinematic equations do not apply. 
 
Now we take the force as a function of x, i.e., ( )F F x= . Watch what happens with calculus. 

 

0 0 0 0

0

2

( )
2

v
x x x t t v

x x x o o v
v

dv dv dx dv v
W F x dx madx m dx m dt mv dt m vdv m

dt dt dt dt
= = = = = = =       

 

2 2

0

1 1

2 2
W mv mv= −  

 
The derivation included a little “chain-rule” action on the derivatives. 

 
If you did not get far enough in Calculus II, just skip the above method until you do. 
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G5. Work and Forces on an Object with No Acceleration. It is instructive to analyze an object 
moving at constant speed and calculate the work on it due to each individual force acting on it. 
 

Colin and Mom, Courtesy Patrick W., flickr. 
License: Attribution 2.0 Generic. 
Photo taken March 5, 2006. Slight contrast 
enhancement on photo. 
 
We can consider pulling a sled at constant 
speed for our analysis. Since there is no gain 
in velocity, the net force must be doing no 
work. Let’s consider each force separately 
first. There are four forces to check out. The 
distance traveled is d. 
 

 
1. The Pulling Force F. The work done is 
 

( cos )FW F d F d=  =  

 
2. The Normal Force N. 
 

(cos90 ) 0NW N d N d=  =  =  

 
3. The Frictional Force f. 

 

( cos180 )fW f d f d fd=  =  = −  

 
4. The Force Due to Gravity. 
 

cos( 90 ) 0gW mg d mg d=  = −  =  

  
We add these up to get the total work. 
 

( cos ) 0 0Total F N f gW W W W W F d fd= + + + = + − +  

 

( cos )TotalW F d fd= −  

 

( cos )TotalW F f d= −  

 
But from the force diagram: cosF f =  for no acceleration. Therefore, 

https://creativecommons.org/licenses/by/2.0/deed.en
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0TotalW =  

 
We can arrive at this zero another way – by first finding the net force. For constant velocity, the 
acceleration is zero. The net is therefore 
 

0netF = . 
 

Calculating the work due to the net force is then 
 

0 0netnetW F d d=  =  = . 

 
G6. The Work Energy Theorem. The Work-Energy Theorem follows from our last section, which 
we summarize below. 
 

  
doctorphys notes (c. 1980) 

 
The Work-Energy Theorem, or Work-Energy Principle, can be stated as follows. The net force is 
also called the resultant force or simply the resultant. 
 

0(of the resultant force)W K K K= − =   

 
We will apply the work energy theorem for two cases. An excellent practice in physics, 
engineering, and math is apply a new technique to a problem for which we already know the 
answer. This approach gives us confidence in the new technique. Our first application below 
takes this path. 
 
Application 1. Gravity. Drop a ball from rest at height h  above the ground. What is the velocity 
just before hitting the ground. We can use the kinematic equation 
 

2 2

02ad v v= − , 

 

choosing down as positive with d h= , 0 0v = , and a g= . 
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22gh v=  

 

2v gh=  

 
Now for the magic of the Work-Energy Theorem. The force is F mg=  and distance is d h= . 

 

2 2

0

1 1

2 2
W Fd mv mv= = −      =>     21

2
mgh mv=      =>     2v gh=  

 
We get the same result! Isn’t it easier to remember the work-energy theorem compared to the 
kinematic formula? 
The work can be represented by the area under a plot of force versus distance. 

 
This visualization will be very important in determining work for our next example, the spring. 
 
Application 2. Spring. For the second application we consider an ideal spring where the force 
necessary to stretch or compress it is proportional to the displacement from equilibrium. This 
ideal scenario is known as Hooke’s Law, named after scientist Robert Hooke (1635-1703). 
 

Hooke’s Law can be stated as 
 

F kx= − , 
 

where the force is that by the spring on the mass in 
the figure. The minus sign is important. If you stretch 
the spring as shown in the figure along with positive x-
direction, the spring force is to the left pulling you 

back. The distance x is measured from the non-stretch position x = 0, the equilibrium position. If 
you compress the spring, your x will be negative and the minus sign in Hooke’s Law will give you 
an overall positive spring force, i.e., a force to the right, since the two minus signs cancel. 
 
We will now use the Work-Energy Theorem for the case where we stretch the spring by pulling 
the mass in the figure to the right and letting go. There is no friction. The spring will pull the 
mass back to the left. What is the speed when the mass reaches the zero point? 
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We can figure out the work from the area under the force versus distance graph. The graph 
shows the work you do to pull the mass to the right, stretching the spring. When you release 
the mass, the spring will do this same work as the mass is pulled back. 

 
The area of a triangle is one-half the base 
times height: 

21 1

2 2
W x kx kx=  = . 

 
Releasing the mass from rest, 
 

2 2 2 2

0

1 1 1 1

2 2 2 2
W kx mv mv mv= = − =  

since  0 0v = . Therefore, 

 

2 21 1

2 2
kx mv=  

 
and the velocity is readily found. 
 

2 2kx mv=  
 

2 2k
v x

m
=  

 

2k
v x

m
=  

 

k
v x

m
=  

 
In stretching the mass, the applied force changes. Refer to the graph. The area gives the work. 
With calculus, we would write for the work we do pulling the mass to the right as 
 

2
2

0 0 0
0

1
( )

2 2

x
x x x x

W F x dx kxdx k xdx k kx= = = = =   . 

 
If integrating over x up to a final value that we also call x bothers you as it used to bother me 
when I was a student, we can pick a specific maximum x to be equal to A. 
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2
2

0 0 0
0

1
( )

2 2

A
A A A x

W F x dx kxdx k xdx k kA= = = = =    

 
Now I would like to demonstrate that the spring pulling on the mass as the mass goes from A to 
0, is also the same work. The force that the spring exerts is given by Hooke’s Law F kx= − . 
 

0
2

0 0
2 2 2

0

1 1
( ) ( ) (0 )

2 2 2

A

A A
A

x
W F x dx kx dx k xdx k k A kA= = − = − = − = − − =    

 
Hopefully you got this far in your Calculus II course to understand these integrations. The 
integral gives you the area under the graph, as we mentioned way back in Chapter B. 
 
 
G7. Power. We are ready to define another physical quantity. Remember, all of these new 
physical quantities are constructed from length (L), time (T), and mass (M). The power is the 
rate at which you do work. The figure below provides the definition. 
 

 
 
The best definition is to go with 

dW
P

dt
= . 

 
A dimensional analysis is given next. 

22
2 3

3

[ ] [ ][ ] [ ][ ][ ]
[ ]

[ ] [ ] [ ]

L
M L

dW W F x m a x MLTP ML T
dt t t t T T

−

 
 

= = = = = = = 
 

 

 
Amazing, how different combinations of L, T, and M give a variety of new physical quantities. 

 
In the MKS Metric System, the unit is named after the Scottish scientist James Watt (1736-
1819). Work in the MKS systems is joules. So the watt (W) is a joule/s (J/s). Don’t confuse the 
“W” as a unit with “W” as meaning work. For the unit, you will have a number with it such as 5 
watts, i.e., 5 W. 
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Below is a table with the units in the three main systems use in our text. 
 

 length time mass force work power 

MKS m s kg N N·m = J J/s = W 
cgs cm s g dyn dyn·cm = erg erg/s 

British ft s slug lb ft·lb ft·lb/s 

 
In the British system, 1 horsepower (hp) equals 550 ft·lb/s. One way to think of the horsepower 
is the power to lift 550 lb (2450 N) a distance of 1 foot (30.5 cm) in 1 second. What is 1 
horsepower in watts? 

 
lb ft lb ft 4.44822 N 1 m N m

1 hp 550.0 550.0 ( )( ) 745.70 745.7 W
s s 1 lb 3.28084 ft s

  
= = = =  

 
Courtesy Sgbeer, Wikimedia 
License CC BY-SA 3.0 
Change from Original Figure: Added 
the “g” so that we have mg (weight). 
 
The 550 lb weight has a mass of 
 

550.0 lb →  
 

1
550.0 kg 249.48 kg

2.20462
 =  

 
The distance of 1 ft is equal to 0.3048 meter. The work done here in 1 second is then 
 

(249.48 kg wt)(0.3048 m) 76.04 kg wt mW =  =    

 
If you nudge this value to 75 you get the “metric horsepower.” 

 
Courtesy Sgbeer, Wikimedia 
License CC BY-SA 3.0 
 
NOTE: The metric horsepower is 
slightly less than the regular 
horsepower. 
 

1 hp 745.70 W=  

 

metric

75.00
1 hp 745.70 735.5 W

76.04
= =  

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Colin and Mom, Courtesy Patrick W., flickr. 
License: Attribution 2.0 Generic. 
Photo taken March 5, 2006. Slight contrast 
enhancement on photo. 
 
Earlier we found that mom pulled with 18 N at 
40°. What is the power if the sled moves at a 
constant speed of 1 meter per second. 
 

( cos )
cos

W F x
P Fv

t t


= = =  

m
cos 18 N 1 cos 40 13.79 W 14 W

s
P Fv = =    = =  

 
1 hp

13.79 W 0.02 hp
745.7 W

P = =  

 
 

We have made a neat discovery in passing – the appearance of the velocity in the power 
formula! Take a constant force along the direction of motion and constant speed. Then, 
 

W Fx
P

t t
= =  

 
P Fv=  

 
You might have noticed that this formula appeared in one of our figures above. 
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