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Physics I with Calculus, Prof. Ruiz (Doc), UNC-Asheville (1978-2021), DoctorPhys on YouTube 
Chapter E. Dynamics. Prerequisite: Calculus I. Corequisite: Calculus II. 
 
E0. Statics and Dynamics. In this chapter we study dynamics. In the last chapter we introduced 
statics. Here are definitions of each of these subject areas. 
 
 Statics – the study of forces and their effects on a body at rest. 
 
 Dynamics – the study of forces and their effects on a body in motion. 
 

We can define these in terms of Newton’s Second Law F ma= . 
 

 Statics. The net force on a body is zero. 0F =  
      Later we will add that torques (forces acting to rotate an object) are also zero. 
 

 Dynamics. The net force on a body is nonzero. 0F ma=   
 
These topics are so important in engineering that there is an entire course on each one in 
Engineering Departments. Below are the course descriptions of our course (minus the lab), 
statics, and dynamics. For 7 years from the academic years 1984-1985 to 1990-1991 I got to teach 
North Carolina State’s Statics and Dynamics courses here in Asheville as part of our Two-Plus-
Two Program with North Carolina State University in Raleigh. We did the statics in the Fall and 
the dynamics in the Spring. I gained a great respect for engineers when I learned and then taught 
methods to calculate a force in one of the beams in a bridge truss. There was plenty of material 

to fill a semester with applications of 0F = . 
 
PHYS 221 Physics I  (4 credit hours). Introductory calculus-based physics for science and 
engineering students with laboratory covering Newtonian statics and dynamics, fluids, heat and 
sound. 
 
ENGR 206 Engineering Statics  (3 credit hours). Basic concepts of forces in equilibrium. 
Distributed forces, frictional forces. Inertial properties. Application to machines, structures, and 
systems.  
 
ENGR 208 Engineering Dynamics (3 credit hours). Kinematics and kinetics of particles in 
rectangular, cylindrical, and curvilinear coordinate systems; energy and momentum methods for 
particles; kinetics of systems of particles; kinematics and kinetics of rigid bodies in two and three 
dimensions; motion relative to rotating coordinate systems. 
 
A bridge truss is shown on the next page. In ENGR 206 Statics we learn how to calculate the forces 
in truss beams and tell whether they are compressions (squeezing the beam) or tensions 
(stretching the beam). 
 

https://www.youtube.com/user/doctorphys
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A Southern Pacific Railroad bridge, now part of the Iron Horse Regional Trail in Contra Costa County, 
California. Wikimedia. Photo Courtesy Leonard G., released into the Public Domain. 

 
Star 266-based cherry picker during 
reconstruction of Długa street in Kraków. 
Courtesy SuperTank17, Wikimedia 
Creative Commons CC BY-SA License 
 
For ENGR 208 Dynamics one learns how 
to calculate motions of beams such as 
those shown in the Cherry Picker at the 
left. In the truss photo above we have 
stationary beams. For the cherry picker 
we have beams in motion. 
 
In our course we will introduce you to 
basic problems in dynamics. The 
engineering statics and dynamics 
courses build on the foundation you 
acquire in our introductory physics 
course. 
 
The steps for solving statics and 
dynamics problems are the same 
1)sketch a picture, 2)give a force 
diagram, 3)apply Newton’s Law, 4)solve. 
 
Let’s do 10 dynamics problems! 

https://en.wikipedia.org/wiki/Southern_Pacific_Railroad
https://en.wikipedia.org/wiki/Iron_Horse_Regional_Trail
https://en.wikipedia.org/wiki/Contra_Costa_County,_California
https://en.wikipedia.org/wiki/Contra_Costa_County,_California
https://creativecommons.org/licenses/by-sa/3.0/deed.en


Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

E1. Apollo 15 Rocket. The Apollo 15 spacecraft (weight about 6 60.48 10  N 0.11 10  lb =  ) sits on 

the massive Saturn V rocket (about 6 627.1 10  N 6.09 10  lb =  ). The rocket thrust at the very 

early phase of the trip is about 633.4 10  N  ( 67.5 10  lb ) and you can neglect any loss of rocket 
mass at this point. How long does it take the rocket to clear the 136 meter (445 ft) tower? 

Launch of Apollo 15. July 26, 1971. Photo Courtesy NASA, Public Domain. 
 

(i) The Sketch (see left). 
 
(ii) The Force Diagram. The rocket is the point at the origin. 
There is the force pulling the rocket down due to gravity. 
It is labeled W for weight. The upward force is the thrust. 
 
(iii) Newton’s Second Law. We now apply F ma=  in the 
vertical direction. The net force F = T – W. 
 

F T W ma= − =  

(iv) Solve. We want the acceleration: 
T W

a
m

−
= . But what 

is m? We get the mass from the weight since W mg= , i.e., 
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the force on the mass due to gravity. The weight to be lifted is the sum of the weight of the Apollo 
15 capsule at the top plus the weight of the Saturn V. 
 

6 6 627.1 10  N 0.48 10  N 27.58 10  NW =  +  =   
 
The total mass is given by 
 

6
6

2

27.58 10  N
2.814 10  kg

9.8 m/s

W
m

g


= = =  . 

 
Now we are ready to calculate the acceleration. We use 

 
T W

a
m

−
= , 

 

where the thrust 633.4 10  NT =  , weight 627.58 10  NW =  , and mass 62.814 10  kgm =  . 

 
6 6

6 2

33.4 10  27.58 10 33.4 27.1 6.3 m
2.068 

2.77 10 2.77 2.77 s

T W
a

m

−  −  −
= = = = =


 

 

2

m
2.07 

s
a =  

 
To find the time to clear the tower, use 

 

2

0 0

1

2
y y v t at= + + , 

 
where 

 

0 0y =  (the rocket starts at the ground), 

 
136 my =  (the bottom of the rocket clears the tower), 

 

0 0v =  (the rocket starts out from rest), 

 

2

m
2.07 

s
a =  (the upward acceleration). 

 

21

2
y at=  
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22y
t

a
=  

 

2y
t

a
=  

 

2 136 272
131.40 11.46 11 s

2.07 2.07
t


= = = = =  

 
11 st =  
 

Always remember to include “Reflection” of your answer. Is the answer reasonable?. Also pay 
attention to the good “Communication” with the right amount of significant figures and proper 
units in the final answer. Also note that our kinematic formulas are used in dynamics problems. 

 
I found and watched the video, and indeed, the tower is cleared in about this time! 
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E2. Pulley and Table. In this section we do a pulley problem, where there are two masses to deal 
with. So we will need two force diagrams, one for each mass. 
 
Mass m2 is pulling mass m1 across the table. There is no friction anywhere. This no-friction 
statement means that m1 has no friction when it slides on the table and the rope that wraps 
around the pulley has no friction with the pulley. Think of the rope as slipping over a stationary 
pulley (no rotation of the pulley) and think of m1 as sliding on ice. Find formulas for the 
acceleration (a) and tension (T). 

 
We have (i) our sketch at the left 
and (ii) our force diagrams. Note 
that we need two, one for each 
mass. 
 
Mass m1 has three forces on it: the 
force W = m1g that pulls it down 

due to gravity, the force of the table upward which is called the normal force N, and the rope 
force T to the right. 
 
Mass m2 has two forces acting on it: the weight m2g pulling it down and the rope force T pulling 
it upward. 

Note that we have invoked Newton’s Third Law of Action and Reaction. 
As m2 pulls m1 with a force designated by T (the action), m1 pulls back 
on m2 with an equal and opposite force having the same magnitude T. 
 
We also assume in our problems taut ropes so there is no slack 
anywhere. Therefore, if you were to cut the rope at any point and grab 
each cut end or stick a scale in there, you would feel or measure the 
same tension T. 
 

We are ready for step (iii) Newton’s Second Law. Now it is time to note which direction is positive. 
I made a choice in the above figure. If the 
problem doesn’t say, then you pick the 
positive direction. Since mass 2 is pulling 
mass 1, that means mass 2 will move 
down. So that is my choice for the positive 
direction for mass 2. Then, to be 
consistent, the positive direction for mass 
1 is to the right. I need to remember the 
plus and minus direction for each mass 
when I proceed to write down the force 
equations. Applying F = ma for each 

direction (x and y) for m1 gives two equations. We only have the y equation for m2. 
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Note that the acceleration of each mass is the same as they move together. The three equations 
are given below. 
 

1T m a=  

 

1 0N m g− =  

 

2 2m g T m a− =  

 

The equation with the normal force N just tells us that 1N m g= , i.e., the table exerts an upward 

force equal to the weight of the mass on the table since that mass is in equilibrium with respect 
to the vertical direction. It neither moves up or down. It stays on the table. 
 
So that leaves two equations. 
 

1T m a=  

 

2 2m g T m a− =  

 
But we are in good shape. We have two equations with two unknowns, the T and a, which is what 
the problem asks us to solve for. 
 
I like this kind of problem that does not have numbers. We are deriving general equations for the 
pulley configuration. If you enjoy this kind of problem, you are leaning towards theoretical 
physics. If you really prefer getting numbers in there as soon as possible, you are leaning towards 
engineering. If you like both, you are the best of both worlds. Though I am a theoretical physicist, 
I enjoy both very much. Teaching statics and dynamics was lots of fun. 
 
Solving two equations for two unknows is a standard high school algebra problem. Since you have 
T in the first equation, you can substitute it into the second equation. But I like to approach the 
solution in a different way that comes in handy lots of times. Thanks to Newton’s Third Law of 
Action and Reaction, the tension T appears in the second equation with opposite sign. The physics 
is suggesting to add the equations and thus eliminate one of the unknowns immediately that 
way. Doing this, we get 
 

2 1 2T m g T m a m a+ − = +  

 

2 1 2( )m g m m a= +  

 

2

1 2

( )
m

a g
m m

=
+
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To find the tension T, use the above equation with 1T m a= . Then, 2
1 1

1 2

( )
m

T m a m g
m m

= =
+

. 

 

1 2

1 2

( )
m m

T g
m m

=
+

 

 
Time for checking on the answers. Remember our I-ARC guide: Inquire, Apply, Reflection, and 
Communicate. We were given the question (Inquire) and we applied physics to solve the 
problem. What about Reflection and Communicate? 
 
In other words, are our answers reasonable (Reflection) and do they have the correct dimensions 

(Communication). The acceleration equation 2

1 2

( )
m

a g
m m

=
+

 has the correct dimensions since 

the ratio of the masses 2

1 2

m

m m+
 is dimensionless and we are left with the dimensions of g, which 

is acceleration. For the T equation 1 2

1 2

( )
m m

T g
m m

=
+

, we have the dimensionless 2

1 2

m

m m+
 factor 

and then there is an extra 1m  factor, which when its units hit the g  units, you get force units. 

Remember that the force due to gravity pulling on a mass is given by mg  near the Earth’s surface. 

 

What about the reasonableness of the answers 2

1 2

( )
m

a g
m m

=
+

 and C? 

 

Check 1. What happens if 1m  is extremely large, going off to 

infinity? Well, it won’t move then and 2m  will just hang there. Let’s 

see what the equations tell us. 
 

1 1

2

1 2

lim lim ( ) 0
m m

m
a g

m m→ →
= =

+
 

 

1 1 1

1 2 2 2
2

21 2

1

lim lim ( ) lim ( ) ( )
1 0

1
m m m

m m m m
T g g g m g

mm m

m

→ → →
= = = =

+ +
+

 

 

Note the trick of dividing the numerator and denominator by 1m  in evaluating the limit. 

 

These results are the expected ones. The mass 1m  on the table does not move and the tension 

in the rope is due to the weight of the hanging mass 2m . 

 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

Check 2. Mass 2m  is super large. We expect mass 2m  to fall unimpeded at a g= . Since the 

acceleration is the same for both masses, 2m  will also accelerate at a g=  and the force on it by 

Newton’s Second Law has to be 1 1 1F m a m g= = . Let’s see if the formulas agree. 

 

2 2 2

2

11 2

2

1 1
lim lim ( ) lim ( ) ( )

0 1
1

m m m

m
a g g g g

mm m

m

→ → →
= = = =

+ +
+

 

 

2 2 2

1 2 1 1
1

11 2

2

lim lim ( ) lim ( ) ( )
0 1

1
m m m

m m m m
T g g g m g

mm m

m

→ → →
= = = =

+ +
+

 

 

Check 3. Mass 1m  is extremely small. We expect a g=  with no tension in the rope, i.e., 0T = . 

 

1 1

2 2 2

0
1 2 2 2

lim lim ( ) ( )
0m m

m m m
a g g g g

m m m m→ →
= = = =

+ +
 

 

1 1

1 2 2

0
1 2 2

0
lim lim ( ) ( ) 0

0m m

m m m
T g g

m m m→ →


= = =

+ +
 

 
 

Check 4. Mass 2m  is super small. It will then just hang there incapable of making 1m  move. We 

expect 0a =  with a tension in the rope equal to the weight of 2m , i.e., 2 0T m g=  . Let’s see. 

 

2 2

2

0 0
1 2

lim lim ( ) 0
m m

m
a g

m m→ →
= =

+
 

 

2 2 2

1 2 2
2

21 2

1

lim lim ( ) lim ( )

1
m small m small m small

m m m
T g g m g

mm m

m

→ → →
= = =

+
+

 

2 2

1 2

0
1 2

lim lim ( ) 0
m m

m m
T g

m m→ →
= =

+
 

 
An engineer that is designing a system has to think in terms of variables like this, similar to a 
theoretical physicist. Here is an area where engineers and physicists think alike. 
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E3. Two Masses Over a Pulley. Here we have two masses hanging where the rope goes over a 
pulley. Once again, there is no friction. The rope can slip easily over the pulley. Again, we are to 
find the acceleration a  and tension T . 

 
The (i) sketch is at the left along with the (ii) 
force diagram. Such force diagrams are also 
called free body diagrams since the masses 
are placed at the origin free from the 
structure. But we do include all the forces. 
 
Note the importance of choosing a positive 

direction. See the “+” sign in the sketch. That choice means for positive acceleration 1m  will move 

up and 2m  will move down, For negative accelerations, the masses will move the opposite way. 

 
(iii) Newton’s Second Law. The two equations are below. 

 

1 1T m g m a− =  

 

2 2m g T m a− =  

 
(iv) Solve. Here is where Newton’s Third Law leads the way. 
The tension T  appears with opposite signs in the 
equations due to the Action-Reaction feature. So the 

physics is suggesting we add the equations as we did in the previous pulley problem. 
 

1 2 1 2T m g m g T m a m a− + − = +  

 
The tensions cancel. 

 

1 2 1 2m g m g m a m a− + = +  

 

2 1 1 2( ) ( )m m g m m a− = +  

 

2 1

1 2

( )
m m

a g
m m

−
=

+
 

 
We can now substitute a  into any of the two force equations. I like the first one. 

 

1 1T m g m a− =  
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2 1
1 1

1 2

( )
m m

T m g m g
m m

−
− =

+
 

 

2 1
1 1

1 2

( )
m m

T m g m g
m m

−
= +

+
 

 

2 1
1

1 2

1 ( )
m m

T m g
m m

 −
= + 

+ 
 

 

1 2 2 1
1

1 2 1 2

m m m m
T m g

m m m m

 + −
= + 

+ + 
 

 

1 2 2 1
1

1 2

( )
m m m m

T m g
m m

+ + −
=

+
 

 

2
1

1 2

2
( )

m
T m g

m m
=

+
 

 

1 2

1 2

2
( )

m m
T g

m m
=

+
 

 
Communication Check. Do the units make sense? Are they correct? 
 

Yes for  2 1

1 2

( )
m m

a g
m m

−
=

+
 since the mass units cancel and a  then has units of g . Correct! 

 

Yes for  1 2

1 2

2
( )

m m
T g

m m
=

+
 since the units in parentheses reduce to mass and Mg gives force. 

 
Reflection Check. Do the answers make sense? You can consider the “Communication Check” as 
a “Reflection” but I like to separate them. For “reflection” I ask myself if the answers make sense. 
For “communication” I ask myself are the units correct and if I am using numbers, do I have the 
right amount of significant figures? 
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Check 1. What happens if 1m  is extremely large, going off to infinity? 

 

1 1

2 1

1 2

lim lim ( )
m m

m m
a g

m m→ →

−
=

+
 

 

1 1

2

1

2

1

1
0 1

lim lim
1 0

1
m m

m

m
a g g g

m

m

→ →

 
−  − 

 = = = − +  +
  

 

 

The acceleration is negative, which means that 1m  moves down. And it also falls at the usual 

acceleration due to gravity without being impeded. The mass 2m  is so light relative to 1m  that it 

has no effect on the falling 1m . What about the tension in the rope? 

 

1 1 1

1 2 2
2

21 2

1

2 2
lim lim ( ) lim ( ) 2

1
m m m

m m m
T g g m g

mm m

m

→ → →
= = =

+
+

 

What’s with that? It makes sense since if 2m  were at rest hanging, you would have 2m g . Now if 

you accelerate it upward at g , you need an extra 2m g . 

 

Check 2. What happens if 2m  is extremely large, going off to infinity? We expect that 2m  will fall 

freely pulling 1m  up. The acceleration will be a positive g  for each mass. Let’s see if the math 

comes out right? 

2 2

2 1

1 2

lim lim ( )
m m

m m
a g

m m→ →

−
=

+
 

 

2 2

1

2

1

2

1
1 0

lim lim
0 1

1
m m

m

m
a g g g

m

m

→ →

 
−  − 

 = = = +  +
  

 

 
It checks out. 

 

For the tension, we get a similar result as before, but now with 1m  instead of 2m . 

 

2 2 1

1 2 1
1

11 2

2

2 2
lim lim ( ) lim ( ) 2

1
m m m

m m m
T g g m g

mm m

m

→ → →
= = =

+
+
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E4. Block on Incline with No Friction. A block of mass m  in on an incline that makes an angle   
with respect to the horizontal. There is no friction. Find the acceleration of the mass. 

 
At the left is (i) a sketch and (ii) the force diagram 
superimposed on it. There are two forces acting on the 
mass, the weight due to gravity pulling down and the 
force the incline exerts normal to the block. There has to 
be this normal force; otherwise, the mass would 
penetrate into the incline. 
 

(iii) Newton’s Laws. Along the incline: sinmg ma =  

   Along the normal force: cos 0N mg − =  

 
These equations lead immediately to the following. The answer to the question for the 
acceleration is given by the first equation. 
 

sina g =  

 

cosN mg =  

 
Communication Check. Are the units correct? Yes since g  has acceleration units and mg  has 

force units. 
 
Reflection Check. Are the answers reasonable? 
 
Check 1. The case where the angle is zero. 
 

0 0
lim lim( sin ) sin(0 ) 0a g g
 


→  → 

= =  =  

 

0 0
lim lim( cos ) cos(0 )N mg mg mg
 


→  → 

= =  =  

 
These results are expected. At no incline, there is no acceleration and the normal force pushing 
up on the block is equal to the weight of the block. 
 

Check 2. The case where the angle is 90°. 
 

90 90
lim lim ( sin ) sin(90 )a g g g
 


→  → 

= =  =  

 

90 90
lim lim ( sin ) sin(0 ) 0N mg mg
 


→  → 

= =  =  

 
These results are expected again. The block is in free fall and there is no normal force. 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

E5. Incline with Pulley. Object A weighs 10 N and rests on a frictionless plan with dimensions 
shown in the figure. Object B weighs 20 N. The masses are held in place, then released.  
 
 1. After release, what is the acceleration of the masses in terms of g? 
 2. After release, does A move up the plane or down? 
 3. What is the speed of each mass 1 second after release? 
 
 
 
 
 
 
 
 
(i) Sketch                                                            (ii) Force Diagrams 

 
 
 
 
 
 
 
 
 

We choose up the incline as positive. If 0a  , that means mass A is moving down the incline. 
 
(iii) Newton’s Laws. 
 

Mass A:  sinA AT m g m a− =  

Mass B: B Bm g T m a− =  

Add:   sin ( )B A A Bm g m g m m a− = +    =>   
sinB A

A B

m g m g
a

m m

−
=

+
   =>   

sin

( )

B A

A B

m g m g
a g

m m g

 −
=  

+ 
 

 

1. 
sin 20 10(3 / 5) 20 6 14 7

10 20 30 30 15

B A

A B

m g m g
a g g g g g

m g m g

 − − −
= = = = = 

+ + 
 

 
2. Mass A moves up the incline since 0a  . 

 

3. Use 0v v at= + , where 0 0v = , 
2 2

7 7 m m
9.8 4.573

15 15 s s
a g= =  = , and 1 st = . 

2

m m
0 4.573 1 s 4.6

s s
v at= + =  =  
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E6. The Elevator. An elevator is accelerating upward as a cable exerts an upward force P. Give 
your apparent weight if you are standing on a scale in the elevator. What about accelerating 
downward? What about decelerating but moving updward? 
 

 
Glass Elevator at the Atlanta Marriott Marquis Hotel, Atlanta, Georgia, USA 

Photo by doctorphys, February 17, 2017 
 

1. Going Up. The upward force P is transmitted so that 
it is also the normal force upward on your feet due to 
the floor of the elevator. 
 

P mg ma− =  

 
( )P ma mg m a g= + = +  

 
( )P m g a= +  

 
The scale will read P. For a > 0 the scale shows a value greater than your weight: P mg . 

 
2. Going Down. For downward acceleration, a < 0, the scale reads less: P mg . You can also be 

going upward, but with deceleration occuring. Then a < 0 for that case also. 
 
Note that if a g= − , then you are weightless, i.e., in free fall and the scale reads zero: 0P = . 
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E7. Twirling a Mass on a String. I am twirling a mass with a buzzer to demonstrate the changes 
in pitch known as the Doppler Effect. A photo of the demonstration is below. The class was The 
Physics of Sound and Music on September 3, 2015. 
 

Question. What is the tension in the string if I 
make two complete revolutions per second, the 
mass is 0.1 kg, and the radius of the circle is 0.7 m? 
 
Solution. Here is our first problem with 
acceleration due to circular motion. Note that for 
circular motion, the acceleration is towards the 
center of the circle. 

2mv
T

r
=  

 
2 2 (0.7 m) m

8.7965
0.5 s s

r
v

t

  
= = =  

 
2 2(0.1 kg)(8.7965 m/s)

11.05 N 11 N
0.7 m

mv
T

r
= = = =  

 
11 NT =  
 

This tension 
1 lb

11 N 2.5 lb
4.45 N

T = =  

 
Where is the force diagram and what is holding the mass up in the air? 

 
The string has to slant up a little to get the 
forces balanced in the vertical direction. 
Look carefully at the above photo and you 
will see a slight angle. I didn’t give the 
force diagram first because I didn’t want 
you worrying about this subtlety. But let’s 
revisit things again now more carefully. 
 

2

cos
mv

T
r

 =         sinT mg =  

Let’s see what this angle is. Divide the equation sinT mg =  by the equation 

2

cos
mv

T
r

 = . 
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2 2

sin

cos /

T mg gr

T mv r v




= =  

 

2
tan

gr

v
 =  

 

We know 
2

m
9.8 

s
g = , 0.7 mr =  was given, and we calculated 

m
8.7965

s
v = . 

 

2 2

(9.8) (0.7)
tan

8.7965

gr

v



= =  

 
tan 0.08866 =  

 
1tan 0.08866 5.0666 −= =   

 
5 =   

 
This angle is very, very small. 

 
Now we should get the tension since we are doing the problem more accurately. 

 
sinT mg =  

 

sin

mg
T


=  

 
The mass was given as 0.1 kgm= . 

 
(0.1)(9.8) 0.98

11.097
sin sin5.0666 0.0883

mg
T


= = = =


 

 
11 NT =  
 

This result is the same as before to two significant figures. 
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E8. Revolving Mass on a Table. 
A mass (m) is set into a circular 
motion on a table with an 
attached string pulled taut due 
to a hanging mass (M). 
 
The hanging mass is a can of 
Campbell’s Soup chosen by your 
author since he is from Camden, 
New Jersey, home of Campbell 
Soup. 
 
If you ever see Campbell Soup in 
a grocery store, pick up a can 
and look on the back. Do you 
see Camden, NJ printed 
somewhere? 
 
Problem. Derive an equation for 
the velocity needed in terms of 
the mass of the little yellow 
puck (m), the mass of the soup 
can (M), the radius of the 
circular orbit (r), and the 
gravitational constant (g).  
 
A sketch and forces diagrams are below. The left force diagram is for mass m (the puck) and the 
right force diagram is for mass M (the soup can). The equations appear below each diagram. 

 
 

The equations for the puck are N mg=  and 

2v
T m

r
= . For the soup we get T Mg= . The tension 

in the string is T and Newton’s Third Law of Action-Reaction has been applied. A positive direction 
has also been chosen in a consistent fashion for the masses m and M. 
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The equations we need to finish the problem are these two: 
 

2v
T m

r
=      and     T Mg= . 

 
We are asked to solve for the velocity v. We first eliminate T. 
 

2v
m Mg

r
=  

 
Now solve for v. 

2v Mg

r m
=  

 

2 Mgr
v

m
=  

 

Mgr
v

m
=  

 
Note that for circular motion, the acceleration is towards the center of the circle. 
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E9. Conical Pendulum. A conical pendulum bob is swinging in 
a horizontal circle as shown in the figure (Courtesy 
CosineKitty, Wikimedia, Public Domain). The bob mass is m , 

the length of the pendulum cable is L , the vertical length is 
h , the radius of the circle is r , the angle is  , the circular speed 

of the bob is v , and the tension in the pendulum cable is T . 
 
1. Find the angle   in terms of m , v , r , and g . Note that the 

angle might be independent of one or more of these 
parameters. 
 

2. Find the specific angle when 3.6 kgm= , 
m

2.1 
s

v = , and 

1.2 mr = . 
 

3. Find L  in meters for the data given in 2. 
 

Solution. For this problem we are merging the 
sketch and force diagram in the figure at the left. 
 

 xF ma=      =>     

2

cos
v

T m
r

 =

 sin 0yF T mg= − =  

 
Since 90 + =  . 

2

sin
v

T m
r

 =  

 
cosT mg =  

 

Divide the equations to get 
2

tan
v

gr
 = . 

1. The angle formula: 
2

1tan ( )
v

gr
 −= . Compare this formula to the angle formula in E7? 

2. The angle with given numbers: 

2
1 12.1

tan ( ) tan (0.37500) 20.556 21
9.8 1.2

 − −= = =  = 


. 

 

3. The length: sinr L =  => 
1.2

3.418 3.4 m
sin sin 20.556

r
L


= = = =


. 
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E10. Railroad Cars. A leading car is pulling three railroad cars. You are seeing the last car in the 
foreground. Label the car closest to you 1. The next car is then 2, the next 3, and the fourth and 
final one is the lead car. 
 
The weight of cars 1, 2, and 3 are 1.0 x 104 N, 2.0 x 104 N, and 3.0 x 104 N respectively, based on 
what is in them. The lead car is pulling on car 3 with a force T3 = 6.0 x 103 N. A force of 104 N is 
close to 1 US ton.  
 
Let T1 be the tension force in the connector between car 1 and car 2. Let T2 be the tension force 
between car 2 and car 3. Find T1, T2, and the acceleration a in m/s2. Neglect any friction. 

Train in England, Courtesy Phil Sangwell, flickr, Creative Commons Attribution 
 

https://creativecommons.org/licenses/by/2.0/deed.en
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Solution. A sketch is at the right 
where we replaced the lead car with 
a magic hand. 
 
The equations are given at the 
bottom of each force diagram. We 
really do not need the vertical 
equations but it is best to always 
include all the forces acting on each 
body. 
 
The application of Newton’s Third 

Law gives us opposite action-reaction forces. This feature makes the algebra easy. We can add 
all of the following three equations that come from the force diagrams. 
 

1 1T m a=           2 1 2T T m a− =           3 2 3T T m a− =  

 

1 2 1 3 2 1 2 3( ) ( )T T T T T m a m a m a+ − + − = + +  

 

1 2 1 3 2 1 2 3( )T T T T T m m m a+ − + − = + +  

 

3 1 2 3( )T m m m a= + +  

 

Given:     
3

3 6.0 10  NT =      
4

1 1.0 10  Nm g =       
4

2 2.0 10  Nm g =       
4

3 3.0 10  Nm g =   

 

3 1 2 3( )T m m m a= + +      =>     3 1 2 3( )
a

T m g m g m g
g

= + +  

 

3 4 4 46.0 10  N (1.0 10  N 2.0 10  N 3.0 10  N)
a

g
 =  +  +   

3 46.0 10  N (6.0 10  N)
a

g
 =   

3

4

6.0 10  N 1

6.0 10  N 10

a

g


= =


 

 

1

10

a

g
=  
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2

m
0.1 0.98

s
a g= =      =>     

2
0.98

m
a

s
=  

 

Summary:          1 1T m a=           2 1 2T T m a− =           3 2 3T T m a− =           
1

10

a

g
=  

 
4

1 1.0 10  Nm g =       
4

2 2.0 10  Nm g =       
4

3 3.0 10  Nm g =   

 

We can first solve for 1T . 

 

4 4 3

1 1 1

1
1.0 10  N 1.0 10  N 1.0 10  N

10

a a
T m a m g

g g
= = =   =   =   

 
3

1 1.0 10  NT =   

 

Next we go for 2T . 

 

2 1 2T T m a− =  

 

2 1 2T T m a= +  

 

2 1 2

a
T T m g

g
= +  

 

3 4

2

1
1.0 10  N 2.0 10  N

10
T =  +    

 
3 3

2 1.0 10  N 2.0 10  NT =  +   

 
3

2 3.0 10  NT =   


