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Physics I with Calculus, Prof. Ruiz (Doc), UNC-Asheville (1978-2021), DoctorPhys on YouTube 
Chapter B. Linear Kinematics. Prerequisite: Calculus I. Corequisite: Calculus II. 
 
B1. Kinematics, Speed, and Units: Units Tell You What to Do. The descriptive study of motion 
without analyzing the forces that cause the motion is called kinematics. Therefore, units 
associated with kinematics include distance, time, and speed. The relationship among these 
units are not derived by any fundamental laws of physics. The laws of physics that tell us how 
things move will involve forces. We call that topic of physics dynamics. Let’s illustrate how units 
in kinematics follow from common-sense definitions. 
 
We return to distance, time, and speed. What is your distance traveled in meters if you travel at 
a speed of five meters per second (5 m/s) for 2 seconds (2 s). The answer is 
 

m
5 2 s 10 m

s
 = . 

 
Over the years of my teaching students would tell me they learned the formula distance equals 
rate times time. I did not like hearing about the word rate. The formula they are talking about is 
one I like to write as 
 

distance = velocity time , which with symbols, is  

 
d vt= . 

 
Such a formula is a kinematic formula, following from the units themselves. A typical student 
would solve the above problem by writing down the formula and then plugging in the numbers 
as follows: 

d vt=      =>     5 2 10 md =  =      since     5v =  and 2t = . 
 

I would prefer for now, that you forget the formula and use cancellation of units to get your 

answer. Write down one of the given values, say the speed of 
m

5
s

. You want meters. 

Therefore, you have to cancel that second (s) in the denominator. You use your other “given” 
data to do the job. 

m
5 2 s 10 m

s
 = . 

 
You did not even need to know the formula! Suppose you wrote down 2 s to start with? You 
use the other “given” data to transform the seconds into meters. 
 

m
2 s 5 10 m

s
 =  

 

https://www.youtube.com/user/doctorphys
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Again, no formula. The units tell you what to do. And using the units, you are less prone to 
error. I have seen many students grab the formula and plug in numbers without thinking too 
much about units and going astray. That said, we will arrive at kinematic formulas in this 
chapter. You can consider these as being derived and we will use various algebraic methods. 
 
B2. Acceleration. Another physical quantity that arises naturally in kinematics is acceleration. 
Back in 2009, I was the first author to publish an article in The Physics Teacher on using 
YouTube to teach physics. The paper dealt with kinematics: 
 

Michael J. Ruiz, “Kinematic Measurements from YouTube Videos,” 
The Physics Teacher 47, 200-203 (April 2009). 

 
One of the examples in the paper is data from a BMW K1200S Motorcycle, a high-speed bike 
produced from 2003 to 2008 in Europe and the United States. Such a bike appears below. 

 
BMW K1200S 
Sungwon Kim, Flickr 
Creative Commons (CC 
BY-NC-ND 2.0) 
 
The data we will use 
came from a YouTube 
video posted in 2006 
and published in the 
above paper. Some 
have questioned the 
authenticity of the 
actual video, but we 
can still illustrate the 
physics concepts with 
the data as given. 

 
 
A plot of the speed in kilometers per 
hour (km/h) against time in seconds 
(s) is given at the left. The figure 
comes from a YouTube video. 
 
The data was taken from the 
speedometer seen in the video. The 
video player gives the time in 
seconds. Note the drop in speed in 
two places as gears were shifted. 
 

https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/
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The bike accelerates from rest to a speed of 280 kilometers/hour in 40 seconds. The 
acceleration is another physics quantity derived from two of our three base units: distance and 
time. We do not need mass for this one. To illustrate the concept, consider an object that starts 
from rest and then every second it picks up 2 m/s in speed. Therefore, after 1 second, it is going 
2 m/s; after 2 seconds it is going 4 km/h, and so on. The table below lists the change in speed 
over a few seconds. 
 

Time (s) Speed (m/s) 

0 0 

1 2 
2 4 

3 6 

4 8 

5 10 

 
The acceleration is defined as the change in speed per time interval. In our case, the increasing 
change is constant. Let v  represent the speed. The letter v  stands for the magnitude of the 
velocity, which is the speed. We consider a moving object along a straight line, i.e., no change in 
direction. 
 
Let the change in speed be expressed as delta v: v , where the delta is the Greek letter  . The 
Greek lowercase for delta is the symbol  . Greek letters are often used in physics and 
mathematics. The corresponding change of time is t . To get the change in speed per time 
interval, we divide as per always means division. The acceleration is 
 

v
a

t


=


, 

 
which in general gives an average acceleration because the acceleration can change from 
moment to moment. In our case, it does not. We are looking at a case of constant acceleration 
over our time interval. Plugging in the numbers for the interval of the entire 5 seconds, 
 

2

10 m/s 0 10 m/s m 1 m
2 2

5 s 0 5 s s s s

v
a

t

 −
= = = =  =
 −

, 

 
where we keep the units. Note that in the denominator we have seconds multiplying seconds. 
We write that as seconds squared. Think of a change, i.e., the delta, as writing down the final 

value and subtracting the initial value. A change in velocity is then written as final initialv v v = − , 

which we can abbreviate as f iv v v = − . The corresponding change in time is then f it t t = − . 

The general equation for the acceleration follows as 
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f i

f i

v v v
a

t t t

 −
= =
 −

. 

 
But in real life we want the t  to be very small so that we obtain an accurate value of the 
acceleration at a given instant. Technically, we want t  to approach zero. You have 
encountered this idea in calculus. Remember that this physics course has calculus as a 
prerequisite. In calculus we write 

0
lim
t

v
a

t →


=


, 

 
where lim stands for limit. Note that as 0t → , we also have 0v → , giving a finite ratio. This 
point is important because we never want to divide by zero. We are taking the limit here as t  
approaches 0. Remember our definition of velocity as distance divided by time? By analogy, we 
can write 

f i

f i

x x x
v

t t t

 −
= =
 −

     and     
0

lim
t

x
v

t →


=


, 

 
where the distance variable is x . An excellent visualization of these quantities is found in the 
concept of slope. When we plotted height (distance) against time in our last chapter, the slope 
gave the growth rate, a speed. We investigate the slope more in the next section. 
 
Before we leave this section we can derive an important formula we will need later. We 

consider a case of constant acceleration f i

f i

v v v
a

t t t

 −
= =
 −

. Now let the final velocity be fv v=  

and the initial velocity be 0iv v= . Then let the final time be ft t=  and the initial time 0it = . In 

other words, we start the timer at the initial time. Then 
 

f i

f i 0
ov v v v v

a
t t t t

 − −
= = =
 − −

, 

 

which leads to oat v v= −  and the very important formula 

 

0v v at= + . 
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B3. The Slope of a Velocity vs Time Graph. The key to understanding how calculus relates to 
kinematics is the velocity versus time graph. Note that at times the word velocity refers to the 
magnitude of the velocity vector, i.e., velocity can be used for speed in practice. 

 
Applying this concept to our 
graph the speed versus 
time, the slope gives the 
acceleration. The units 
corresponding to the graph 
at the left are 
 

km/h km

s h s
=


. 

 
If you prefer, you can also 
write 
 

2

km km 1 km

h s 3600 s s 3600 s
= =

 
 

 

since there are 3600 seconds (3600 s) in one hour (h). I like to leave things as 
km

h s
. The 

acceleration is greatest where the slope is steepest. Look at the time between about 6 seconds 
and 10 seconds, where the speed goes from 50 km/h to 150 km/h. The acceleration over this 
range is 
 

f i

f i

rise 150 km/h 50 km/h 100 km/h km
25

run 10 s 6 s 4 s h s

v v v
a

t t t

 − −
= = = = = =

 − − 
. 

 
Every second we pick up an additional 25 km/h in the speed. For the slope between 17 s and 22 
s, the values reading the graph as best as we can, is 
 

f i

f i

rise 260 km/h 225 km/h 35 km/h km
7

run 22 s 17 s 5 s h s

v v v
a

t t t

 − −
= = = = = =

 − − 
. 

 
In this time interval we pick up a reduced 7 km/h every second. When we reach over 35 s, the 
graph flattens out. A horizontal flat line means no slope. There is no rise. The acceleration is 

then zero and the velocity constant. Note that units for a  can always be expresses as 
2

m m

s s s



. 
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If we were to make a graph of the acceleration as a function of time, we would have what they 
call the derivative in calculus class. The new graph is a derived graph where we plot the slope of 
the original graph at all points. 
 
B4. Four Equations of Linear Kinematics. Here are notes I made in 1978 when I first started 
teaching at UNC Asheville. We will consider a car traveling east, but first watch a car at rest. 
Imagine looking at the car from a position above the road, like from the sky looking down. 
 
Case 1. Car at Rest.  
 

 
 

The car does not move and is located a distance 0x  from Asheville. Therefore, plotting distance 

from Asheville against time gives a horizontal line at 0x x= . The velocity is zero since the car is 

at rest parked. Therefore, the velocity plot against time is also a horizontal line, where the 
speed is zero: 0v = . Similarly, the car is not accelerating. So the plot or acceleration against 
time is also a horizontal line at zero: 0a = . Note the three formulas written under the graphs:  
 

0x x= , 0v = , and 0a = . 

 
Technically, the horizontal lines in the graphs go forever. These formulas are our kinematic 
formulas for this case where the car is at rest. We will now proceed to move to more general 
cases of motion. First, we will consider a car traveling at constant velocity: straight line motion 
with constant speed. 
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Case 2. Car with Constant Velocity.  
 

 
 

This case has a car at position 0x x=  initially, but is now traveling at that moment and beyond 

at a constant velocity 0v v= . There is no acceleration since there is no change in velocity. 

Therefore 0a =  at all times. The secret here is to start with the velocity graph. Focusing on the 
units, the area of the rectangle shown represents the distance traveled. We can see this feature 

easily by picking numbers. Say 0

m
2

s
v =  and a time for the horizontal green line as 5 st = . 

Don’t worry about our use of t  to represent the axis and also this specific time for the 
horizontal green extent. If you want, you can change the t  representing the axis to -axist . The 
variable t  represents any time along the axis. It is the general time variable. 
 

The distance traveled for the car going 0

m
2

s
v =  for 5 st =  is given by playing with the units. 

You must multiply: 
m

2 5 s 10 m
s
 = . This value is represented by the area under the green line. 

We obtain the area of this rectangle by multiplying length times width. The length represents 

the 5 st =  and the width of the string is represented by 0

m
2

s
v = . Area represents distance? 

That is weird, but correct. Therefore, the distance traveled is given by 0

m
10 m 2 5 s

s
v t=  = . But 

since we start out at 0x x= , the formula for the distance from Asheville as the reference is 

 

0 0x x v t= + . 
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We can graph this equation for ( )x x t= . It is a straight line with slope 0v  and vertical intercept 

0x . Remember from algebra the basic linear equation y mx b= + . Now, the three formulas 

listed under the graphs are respectively 0 0x x v t= + , 0v v= , and 0a = . Note that these 

formulas for the case where 0 0v v= =   reduce to our previous formulas for the car at rest: 

0x x= , 0v = , and 0a = . 

 
Such reduction of formulas is one of my favorite aspects of physics. The more general formulas 
reduce to simpler formulas when the situation simplifies. Our next case is even more general: 
one with constant acceleration that is nonzero. 
 
Case 3. Car with Constant Acceleration (Nonzero).  
 

 
 

We start again with the middle graph. The velocity formula is now 0v v at= + . The convention is 

not to write 0a a= , but just a .The formula follows from the units. Remember from our last 

section that acceptable units for a  are 
2

m m

s s s



.  As an example, take 

2

m
2 

s
a =  and 5 st = . 

The gain in velocity after the five seconds is 
 

2

m m
2 5 s 10

s s
v at =  = = . 

 
So that final speed is whatever we started with plus this additional gain: 
 

0v v at= + . 

 
Finally, to give the distance traveled, we use the area trick with the middle graph. We need the 
area of a trapezoid, which we break down into a triangle that sits on a rectangle: 
 

0area of rectangle v t=  (length times width), 

 

21 1
area of triangle

2 2
t at at=  =  (one half the base times the height). 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

 

We need to add these together and then add the sum to the initial starting position 0x . The 

result is 

2

0 0

1

2
x x v t at= + + . 

 
We have two main formulas, which we list in the table below. Our variables are x , v , a , and t  

with initial conditions 0x  and 0v . We list the variable that is missing in each equation. This 

feature is good because we usually are missing some data when given a problem to solve. 
 

2

0 0

1

2
x x v t at= + +  

There is no v  in the equation. 

0v v at= +  There is no x  in the equation. 

??? How about an equation with no a ? 

??? How about an equation with no t ? 

 
It is nice to have four equations, where one of our variables is missing in each. Let’s go for one 
without the acceleration a . 

We can use the formula for a trapezoid instead of the 
rectangle and triangle. The two altitudes are 
 

0v v=  and 0v v at= + . 

 
We take the average and multiply by the base t . 
 

0

1
area ( )

2
v v t= + . 

The alternate distance formula is then 
 

0 0

1
( )

2
x x v v t= + + . 

This result brings us to the following table. 
 

2

0 0

1

2
x x v t at= + +  

no v  

0v v at= +  no x  

0 0

1
( )

2
x x v v t= + +  

no a  

??? How about an equation with no t ? 
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We get the last equation by using the second and third equations to eliminate t . But before we 

do this manipulation, I would like to introduce the parameter 0d x x= − , the distance traveled 

from the starting point 0x . Then, there is less to write down. Take the second equation 

0v v at= +  in the form 0v v
t

a

−
=  and substitute into the third equation in the form 

0

1
( )

2
d v v t= + : 

0
0 0

1 1 ( )
( ) ( )

2 2

v v
d v v t v v

a

−
= + = + . 

 

Remember from algebra that 2 2( )( )a b a b a b+ − = − . Therefore, 

 
2 2

0 0 0
0 0

1 ( ) 1 ( )
( ) ( )

2 2 2

v v v v v v
d v v v v

a a a

− − −
= + = + = . 

 
We now have the four desired equations. 

 

2

0 0

1

2
x x v t at= + +  

no v  

0v v at= +  no x  

0 0

1
( )

2
x x v v t= + +  

no a  

2 2

0
0

2

v v
x x

a

−
= +  

no t  

 

I like to remember the last one 
2 2

0

2

v v
d

a

−
=  as 2 2

02ad v v= − . You can pick your own favorite 

way to remember these four important and basic kinematic equations. Now for the big 
summary and connection with calculus. See the next chart. 
 

Moving from one graph to the next one on the right => differential calculus (slopes). 
Moving from one graph to the next one on the left => integral calculus (areas). 

 
But do not worry if the integral calculus on the following page is strange to you. Integral 
calculus is taught in Calculus II and that course is a corequisite for this course. So you can skip 
over the integral calculus you see on the next page for now. 
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21

2
o ox x v t at= + +         =>        

1
0 (2 )

2
o

dx
v a t

dt
= + +         =>        ov v at= +  

 

21

2
o ox x v t at− = +    <=    

0 0
( )

o

x t t

o
x

dx
dt vdt v at dt

dt
= = +      <=   ov v at= +  

 
The same applies to the velocity and acceleration graph pair. 

 

ov v at= +         =>        0
dv

a a
dt

= + =         =>        a a=  

ov v at= +    <=    
0o

v v

v

dv
dt adt

dt
=     <=   a a=  
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B5. Real-World Kinematics. In preparing this course, I explored a real-world example from a 
YouTube video and published the exercise. 
 

Michael J. Ruiz, "Speed, acceleration, and distance plots from a racecar 
Speedometer (0 – 300 km-1)" Physics Education 56, 055035 (September 2021). 

 
I would like to proceed along these lines with data from a Camaro doing a test run where it 
accelerated from 0 to 300 km/h in 40 seconds. See the photo below for three racing cars. The 
two cars on the left are Camaros. 
 

 
 

Three cars racing, Courtesy Photographer Zach Catanzareti. Used by permission. 
https://www.flickr.com/photos/58980992@N03/albums/ 

 

The data will come from 
 

Alharmoodi H 2019 2018 Camaro ZL1 Stock from 0 – 302 km/h YouTube 
https://www.youtube.com/watch?v=jf3fEcUiB0I 

 
The results from noting the speedometer every second are shown in the table below. 

https://www.flickr.com/photos/58980992@N03/albums/
https://www.youtube.com/watch?v=jf3fEcUiB0I
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Table 1. Kinematic data for the accelerating Camaro. 
 

Time 
s 

Velocity 
km h-1 

Velocity 
m s-1 

0 0 0.00 

1 0 0.00 

2 2 0.56 

3 30 8.33 

4 46 12.78 

5 76 21.11 

6 99 27.50 

7 112 31.11 

8 138 38.33 

9 153 42.50 

10 163 45.28 

11 176 48.89 

12 188 52.22 

13 198 55.00 

14 208 57.78 

15 216 60.00 

16 224 62.22 

17 231 64.17 

18 237 65.83 

19 242 67.22 

20 247 68.61 

21 251 69.72 

22 256 71.11 

23 260 72.22 

24 264 73.33 

25 267 74.17 

26 271 75.28 

27 274 76.11 

28 277 76.94 

29 281 78.06 

30 284 78.89 

31 287 79.72 

32 289 80.28 

33 292 81.11 

34 293 81.39 

35 295 81.94 

36 297 82.50 

37 298 82.78 

38 299 83.06 

39 300 83.33 

40 301 83.61 

41 302 83.89 
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The slope for each second gives the acceleration at each second. The area for each section gives 
the distance traveled. These results are approximate since we are simplifying the graph as 
straight line segments. Sample slope and area calculations are shown below. 
 

 
 

The velocity (speed) against time. 

Slope at zero seconds is taken from the slope between t = 0 and t = 1. The slope is zero. The 
slope at 1 s is calculated from the slope between 1 and 2. The slope is 
 

2

rise 0.56 0 m
slope at 1 s 0.56 

run 2 1 s

−
= = =

−
 

 

2

rise 8.33 0.56 m
slope at 2 s 7.8 

run 3 2 s

−
= = =

−
 

 
For the areas, the area in the interval from 0 to 1 s is zero. 
 

area between 0 s and 1 s 0=  => d(1) = 0, i.e., the distance gained by 1 s. 
 

1
area between 1 s and 2 s 0.56 1 0.28 m

2
=  =  => d(2) = 0.28 m. 

 

1
area between 2 s and 3 s (0.56 8.33) 1 4.45 m

2
= +  =  => d(3) = 4.7 m. 
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Time 
s 

Velocity 
km h-1 

Velocity 
m s-1 

Acceleration 
m s-2 

Distance 
m 

0 0 0.00 0.00 0.00 

1 0 0.00 0.56 0.28 

2 2 0.56 7.78 4.72 

3 30 8.33 4.44 15.28 

4 46 12.78 8.33 32.22 

5 76 21.11 6.39 56.53 

6 99 27.50 3.61 85.83 

7 112 31.11 7.22 120.56 

8 138 38.33 4.17 160.97 

9 153 42.50 2.78 204.86 

10 163 45.28 3.61 251.94 

11 176 48.89 3.33 302.50 

12 188 52.22 2.78 356.11 

13 198 55.00 2.78 412.50 

14 208 57.78 2.22 471.39 

15 216 60.00 2.22 532.50 

16 224 62.22 1.94 595.69 

17 231 64.17 1.67 660.69 

18 237 65.83 1.39 727.22 

19 242 67.22 1.39 795.14 

20 247 68.61 1.11 864.31 

21 251 69.72 1.39 934.72 

22 256 71.11 1.11 1006.39 

23 260 72.22 1.11 1079.17 

24 264 73.33 0.83 1152.92 

25 267 74.17 1.11 1227.64 

26 271 75.28 0.83 1303.33 

27 274 76.11 0.83 1379.86 

28 277 76.94 1.11 1457.36 

29 281 78.06 0.83 1535.83 

30 284 78.89 0.83 1615.14 

31 287 79.72 0.56 1695.14 

32 289 80.28 0.83 1775.83 

33 292 81.11 0.28 1857.08 

34 293 81.39 0.56 1938.75 

35 295 81.94 0.56 2020.97 

36 297 82.50 0.28 2103.61 

37 298 82.78 0.28 2186.53 

38 299 83.06 0.28 2269.72 

39 300 83.33 0.28 2353.19 

40 301 83.61 0.28 2436.94 

41 302 83.89 0.00 2520.83 
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The graphs follow. 
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Note that the acceleration is a little erratic at the beginning of the trip. Recall your own 
experience in a car that accelerates from rest. Things can be jerky. Then, things smooth out.  



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

 
 
See the next figure for the relationship among distance, speed, and acceleration within the 

framework of calculus which we have already discussed. Differential calculus involves plotting 

the slope of a function. Moving to the right in the figure shows the derivatives. Integral calculus 

gives the area under the graph, illustrated in figure 7 as moving to the left. 

 
 


