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Physics I with Calculus, Prof. Ruiz (Doc), UNC-Asheville (1978-2021), DoctorPhys on YouTube 
Chapter A. Physical Quantities and Units. Prerequisite: Calculus I. Corequisite: Calculus II. 
 
A1. Physical Quantities. A physical quantity is a property that we can measure. Examples are 
your height, age, and weight. Each physical quantity has a number followed by a unit. Take 
height for example. In the photo below an employee at NASA is measuring the viewing height 
of another NASA employee, Lindsay Rodriguez, who is in a space suit. 
 

Lindsay Rodriguez (c. 2005) 
Courtesy NASA 
 
“Photographic documentation 
of a Lander Ascent Stage Mock-
up Suit Evaluation, with suited 
subject Lindsay Rodriquez. 
View of an unnamed employee 
measuring the viewing height 
of Lindsay Rodriquez, in an 
Advanced Crew Escape Suit 
(ACES) suit.” NASA on The 
Commons, Flickr 
 
 

Another physical quantity is age, e.g., someone might be 16. We would say the age is 16 years, 
with 16 being the number and years being the unit.  

 
Author with Grandson 
 
It is always good practice to include the units and not 
make assumptions. In everyday life, if someone in 
college said they were 20, you would know it is years. 
How about my grandson at the left? If I said he was 5, 
would you think 5 days, 5 weeks, 5 months, or 5 years? 
You would probably figure it out, but this guessing in 
general is very bad.  
 
Always give the units in your final answers to 
assignments. Often, we will work out problems with 
units included as we go. You shall see such examples. 
 
When the units are not included, there are chances of 
confusion and serious errors. We give the extremely 
expensive NASA error next, where a $328 million 

mission failed due to an assumption of incorrect units. 

https://www.youtube.com/user/doctorphys
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The Mars Climate Orbiter was sent to Mars back in the late 1990s. The mission “was 
unsuccessful due to a navigation error caused by a failure to translate English units to metric.” 
Jet Propulsion Laboratory, Caltech. “Last contact with the spacecraft was on September 23, 
1999, 9 months after launch, and an investigation found that the spacecraft burned up in Mars’ 
atmosphere.” Jet Propulsion Laboratory, Caltech. 

Artist Conception of the Mars Climate Orbiter. Courtesy NASA. 
 

The Author’s Wife Weighing Herself 
 
Our third physical quantity, weight, is 
illustrated at the left. A typical scale in the 
USA has units of pounds. We will learn 
about the metric unit newtons later. 
Weight is often reported in the medical 
profession as kilograms. The conversion 
they use is 1 kilogram is equivalent to 2.2 
pounds. But the unit kilogram is 
technically not a weight. The unit kilogram 
refers to mass in the official metric system. 
 

Mass and weight are different. As an example, if a suitcase weighs 60 pounds on Earth, that 
same suitcase would weigh 10 pounds on the Moon. But the mass, a measure of the amount of 
stuff, is the same both on the Earth and on the Moon. 
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We can make the medical use of the unit kilogram for weight please physicists by saying 
kilogram-weight. One kilogram-weight is the weight of a one-kilogram mass on Earth, which is a 
weight of 2.2 pounds. 
 
The subtlety between mass and weight will become more clear when we treat mass and weight 
in greater detail later in our course. For now, just note that mass is a measure of how much 
stuff you have and that does not change if we put you on the Moon (except for a needed 
spacesuit). Weight, on the other hand, is the force that pulls you down to the Earth, which force 
we can measure if you stand on a scale. But if you stand on the same scale on the Moon, you 
will get 1/6 the value since the gravitational pull of the Moon on you is 1/6 of what the Earth 
does. 
 

Female Cat (named Oshejoy) on Scale 
Courtesy Alasam, Flickr 
Creative Commons (CC BY-NC-ND 2.0) 
 
Notice that Oshejoy is blocking the actual 
reading on the scale. She is hiding her 
weight. But physicists love challenges 
and solving problems. The next figure 
indicates how we might arrive at 
Oshejoy’s weight using two angles that 
are equal. We start with making an angle 
using the needle and a line from the 
center to zero. 
 

 We then construct an equal angle on the other side of 
zero. From 0 to close to 270 lb, the span in the lower 
angle, corresponds to about 34 lb. 
 
But wait! That weight is too high for a cat. Since we 
cannot see the entire scale, we surmise that the owner 
is pushing down on the scale at the edge. If you google 
Burmese cat, or just cat in general, you will find that a 
typical weight for a cat is about 10 lb. 
 
In physics we always need to assess our answers. 
Always ask: Is the answer reasonable? 

 
We should always be cautious. A colleague of mine would often say “Trust no one.” Even 
double check yourself! In our next section we give a general guide in solving problems, even 
those outside physics. 
 

https://creativecommons.org/licenses/by-nc-nd/2.0/


Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

A2. Guide in Problem Solving. When I was in school, I was taught in physics to start with the 
question and “the given.” Write down what is given. If a diagram is included in the problem, 
sketch it first and list the given info nest to it. Then you pull out a formula or two and solve. You 
then check your work. Is your answer reasonable? Finally, you report your answer with proper 
units and significant figures. We treat significant figures in the next section. Here, our focus is 
on the general approach to problem solving. 
 
Many years ago, the school I was teaching at, UNC-Asheville, was due for its usual 10-year 
reaccreditation and the official external accreditation committee gave us a homework 
assignment that would take several years to implement. We had to come up with a scheme 
that would be applicable across all disciplines in all courses. Our solution was summarized by 
Inquiry-ARC, where the letters stand for I = Inquiry, A = Apply, R = Reflect, and C = 
Communicate. Surprisingly to me, this approach to problem solving agreed with what I had 
learned in physics courses decades earlier. 
 
The first step in any physics problem is to ask a question – the inquiry part. Then, the “arc” of 
the procedure includes the apply, reflect, and communicate steps. You apply physics and math 
to solve the problem – the apply stage. The next phase is to ask yourself if the answer is 
reasonable. It is so easy to punch in numbers incorrectly in a calculator and get strange results. 
If you are trying to figure out how long it takes a car to go 100 miles at 50 miles per hour and if 
your answer is 5000 hours, you did something wrong. So you go back and check things. In this 
case, we accidentally multiplied the numbers instead of dividing 100 by 50 to get the correct 
answer of 2 hours. Finally, you communicate your answer with the proper unit or units after the 
number and the proper amount of significant figures, which we will explain in the next section. 

Though my school is now in a later phase of re-
accreditation and the I-ARC model has been retired, I still 
like to use it. A logo of the model is at the left. 
 
Here is how you can used the model to outline the 
process of invention and business enterprises. I will use 
Edwin Land (1909-1991) as the example. Legend has it 
that his daughter asked him why she couldn’t see the 
picture right away after he took her photo in the early 
1940s. Back in those days you had to send your film to 
Kodak, a camera company that developed it into a photo 
and then mailed it back to you with the negatives. So, 
according to legend, the daughter posed the “inquiry” – 
the question. 
 

Land later in life said he always starts with a fantasy; you imagine something as perfect. So he 
imagines putting the chemical lab to develop the film in the camera and getting the picture in 
one minute. On a long walk in Santa Fe he came up with the essential solution over about 3 
hours. But it took a few years to work out the details, applying the necessary science and 
testing. You apply science to build a prototype – the apply state. The testing is the reflecting 
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stage. But here you go back and forth many times: prototype – test, next prototype – test, and 
so on. Finally you arrive at a suitable product and then sell it! To be successful in selling, you 
have to communicate to the public. The table below in the invention and business columns 
shows these steps relating to entrepreneurship. 
 

I-ARC Model Physics Invention Business Pianist 
Inquire Question Fantasy Vision – CEO “Fantasy” Performance 

Apply Laws/Math Prototype Research & 
Development 

Practice at Home 

Reflect Check Answer Test Test Playing with a Teacher 

Communicate Proper Units Sell It Marketing Recital 
 
I also threw in an example of the process of becoming a pianist. You can replace this goal with 
becoming a basketball player or other profession. You imagine yourself on the stage giving the 
perfect performance or on the court playing basketball like a pro. To achieve the goal, you 
practice for hours, reflecting and self-correcting as you go. There are stories of the legendary 
basketball pro Michael Jordan, who played college ball in my state at the University of North 
Carolina, practicing for hours and hours. A good teacher or coach helps keep you on track, 
saving you lots of time. All this leads to a recital or basketball game with an audience. Then the 
process repeats with a harder musical composition or more challenging sports opponents. 
 
For the business example, the Chief Executive Officer, the CEO, has the vision and starts the 
company. Land’s company was the Polaroid Corporation, first making sunglasses, then cameras 
that developed the film on the spot – the instant camera. Here is the description of invention in 
Land’s words: 
 

"You always start with a fantasy. Part of the fantasy technique is to visualize something 
as perfect. Then with the experiments you work back from the fantasy to reality, 
hacking away at the components." (Reference Edwin Herbert Land, May 7, 1909 - March 
1, 1991 by Victor K. McElheny, National Academy of Sciences). 

 
Steve Jobs (2010) and iPhone 
Courtesy Matthew Yohe 
at en.wikipedia 
 
Research and development is 
“hacking away at the 
components.” I like to take 
the time to include a section 
like this one in our course 
since physics is related to 
engineering and making 
products to sell. Inventors, 
engineers, and entrepreneurs 
can be inspirational to 

https://en.wikipedia.org/wiki/User:Matt_Yohe
https://en.wikipedia.org/wiki/Main_Page
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physics students. The making of prototypes and testing falls under research and development in 
a company. The same goes for software development – make a version and then iron out the 
bugs. Finally, communicating the product to the public is handled by the marketing division.  
 
Land perfected the grand announcement of a new invention, where he would show up with the 
product on stage and invite the media. Steve Jobs (1955-2011) was so impressed by Land’s 
approach that Jobs incorporated this procedure in the announcement of his Apple products. 
 
A3. Significant Figures. There are different approaches to understanding significant figures. 
Many authors start out by giving rules. That approach is solid and acceptable. You can easily 
google significant figures and find such rules. My approach will be to discuss rounding off 
measurements and arriving at the rules through understanding. In this sense, we will derive the 
rules. 
 
You should know that I am a theoretical physicist and that I like to derive everything myself. My 
approach to physics also incorporates interdisciplinary connections. I do not want to duplicate 
the many classic and excellent works on introductory physics. So for traditional approaches, I 
direct you to pretty much any introductory text in physics. But beware, these texts tend to be 
1000 pages long. One advantage of our informal approach, is that our text is much shorter, 
even with interdisciplinarity present. Nevertheless, I highly recommend that you consult 
traditional texts also. Those books usually include Physics I and II, two semesters. Mechanics is 
the main focus of the first semester, while electricity and magnetism take center stage for the 
second semester. Our text here cover the first semester. 

 
The concept of significant 
figures emerges from making 
measurements. So we star with 
a measurement. At the left we 
are measuring the diameter of 
the US Susan B. Anthony silver 
dollar coin. The coin was 
minted from 1979 to 1981, and 
then again in 1999. 
 
There is some uncertainty in 

any measurement. In this case, we cannot precisely place the ruler on the edge and read the 
other end exactly. From the figure, we can say that the diameter is between 2.6 centimeters 
(2.6 cm) and 2.7 centimeters (2.7 cm). The coin’s right edge looks like it is about midway 
between 2.6 and 2.7 cm. We might say 2.65 cm or 2.66 cm. So what should we report? 
Publications in physics often give a plus or minus, such as 2.65 0.01cmd =  . Or, we can report 

2.65 cm. Since there are 10 millimeters in 1 centimeter, we can also write 26.5mmd = . If we 

look up the specifications for this coin, we actually find 26.5mmd = . We say that we have 
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three significant figures, even though there can be a little uncertainty in the last digit at the far 
right. 
 
But if we do a gross round off to 30 mm, then we do not consider that “0” significant. After all, 
we could have 26, 28, 31 or 33. All of these numbers, and even a few more, round off to 30. So 
zeros at the far right of whole numbers do not count as being significant. Therefore, the 
following numbers all have only one significant figure: 3, 30, 300, and 3000. But a zero in 
between two nonzero numbers is significant. The number 303 has three significant figures. 
There is no round off for that zero in the middle. That zero clearly means no tens. The 303 
indicates 3 hundreds, no tens, and 3 units. 
 
If we know something is 300 where there is no gross rounding off, then we need to place a 
decimal point after the number. Writing 300. with that decimal means the zeros are now 
significant. We have three significant figures. There is no gross rounding off. The number 300. is 
like writing 301 or 302, three significant figures in each case. 
 
Now consider 4 pennies. Here we have only one significant figure. Suppose we write it in terms 
of dollars? Then we have $0.04. The two zeros to the left of the 4 do not add any more 
information or precision to our value. Therefore, these zeros to the left of the 4 are not 
significant. More significant figures would mean more precision, e.g., going from 4 to 4.1 
indicates more detail in a measurement. But with the leading left zeros, there is no new 
information. 
 
What about a zero after a decimal point? If we start with 1.5 and then make it 1.50, we have 
added more precision. This zero is significant because we are intentionally indicating more 
information. Similarly, 1.500 has four significant figures. In summary, we have derived the 
following rules. 
 

1. Each nonzero single-digit number (1, 2, 3, 4, 5, 6, 7, 8, 9) gives us one significant figure. 
2. Any zero falling between two nonzero numbers is significant. 
3. Zeros to the right of a whole number are not significant. 
4. Leading zeros to the left are not significant. 
5. A decimal point after a zero indicates that the zeros immediately to the left are significant. 
6. A zero placed after a number on the decimal side is significant. 

 
When we do calculations, we report the final answer with a number of significant figures 
corresponding to our weakest or most imprecise measurement. Consider a case where a 
vehicle travels at 10.1 meters per second (10.1 m/s) for 1.2 seconds (1.2 s). The distance 
traveled is 

m
10.1 1.2 s 12.12 m

s
d =  = . 

 
Since our most imprecise value in the given information has 2 significant figures, i.e., the 1.2 s, 
we should report our final answer to 2 significant figures, giving 
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12.12 m 12 md = = . 

 
Note that in physics and engineering we write 12.12 m 12 m= , while in a math class they might 
freak out. You could ask, should we write 12.12 m 12 m ? No. The practice is to write 
12.12 m 12 m= . We can interpret this equality by saying that 12.12 is equal or equivalent to 12 
when we want two significant figures. 
 
At times we will encounter a number that is precisely known, such as 2 channels for a stereo 
system. The 2 in this case is exactly 2, i.e., 2.0000000000000…, with an infinite amount of 
significant figures. So we might add a 7th rule. 
 
7. An exact number such as 2 = 2.00000… has an infinite amount of significant figures. 
 
Later in this chapter we will set up a calculation for one channel in a stereo system and we can 
appropriately report the answer to a certain amount of significant figures. To apply our result to 
two channels, we can simply include a factor of 2 in the calculation without reducing the 
number of significant figures. 
 
One final comment. When working out numerical calculations, I keep at least two extra 
significant figures during intermediate steps even though I will discard these extra figures at the 
end of the calculation, rounding appropriately. I do not want to round off in the middle of the 
calculation, but save that for the end. Otherwise, I might “round off my answer away”! 
 
I have found that chemistry professors are extremely strict with reporting the final answer to 
the amount of significant figures corresponding to the value used with the least amount of 
significant figures. When I taught engineering courses for seven years, I noticed that engineers 
often include an extra significant figure in the final answer. In our previous example with the 
12.12 m, a chemist would report 12 m, while an engineer might give 12.1 m in a solution to a 
homework problem. For physics, we can use either the strict chemist rule or include an extra 
significant figure like the engineers. 
 
A4. Derived Units from the Big Three. The three basic units in physics correspond to distance, 
time, and mass. One standard set of units for these in the Metric System is the meter, second, 
and kilogram. We abbreviate this standard as the MKS system, for meter, kilogram, and second. 
Another standard is the cgs system, which stands for centimeter, gram, and second. These 
systems are agreed-upon conventions that have become historical standards. 
 
The point I want to emphasize here is that virtually all the units we use in our first introductory 
physics course can be derived as compound units from the three base units for length, time, 
and mass. A classic example is speed (or velocity v), which combines length and time. If you go 
10 meters in 2 seconds, your speed is 
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10 meters m
speed 5

2 seconds s
v= = = . 

 
We have a new physical quantity, speed, with units of length divided by time. We can write this 
result formally as 

[v]
L

T
= , 

 
which is read, the dimensions of v are equal to length (L) over time (T). Such a description of 
dimensions is called dimensional analysis. 
 
The “big three” – length, time, and mass – are a subset of the seven base quantities in the 
International System of Units (SI), which we often just call the Metric System. These seven 
physical quantities serve as the basis for deriving all other physical quantities. But watch how 
we can derive almost everything we need in our first introductory physics course from three: 
length, time, and mass. 

Space, Time, and Matter 
by Hermann Weyl 
Dover Publications, Inc. 
First English Edition, 1951, 
  translated from German 
First German Edition, 1918 
Purchased by the author c. 1970 for $2.50 
 
The book at the left is an advanced book 
on space, time, and matter, originally 
written in German in 1918 by Hermann 
Weyl. Our key physical quantities are at 
play here: distance (the three dimensions 
making up space), time, and mass (matter). 
 
The topic is Einstein’s general theory of 
relativity, where space, time, and matter 
play a fundamental role. Einstein gave us a 
sophisticated edifice that incorporates 
these three concepts. In a nutshell, the 
fabric of spacetime is shaped by the 
presence of matter (and energy). 
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Albert Einstein (1879-1955) 
Detail from a photograph by Harris & Ewing 
 
Credit Line: Library of Congress, Prints & Photographs Division, 
photograph by Harris & Ewing, [reproduction number, e.g., LC-
USZ62-123456] 
 
We will not do much with Einstein in our introductory 
physics course as our focus will be on Newtonian physics, 
the physics of Isaac Newton (1643-1727). 
 
Notice that when we mention “theory” in physics, we use 
the term in the sense of music theory, a verified body of 
knowledge through experiment, rather than hypothesis. 
 

Two of our base quantities appear in the following graph, where we plot the height of females 
against time. The units for the height are centimeters (cm) and the units for time are years (y). 
The ages plotted are from birth, 0 y old, up to 19 years of age. The value are average values 
taken from data gathered by the United Kingdom (UK) and the World Health Organization 
(WHO). The data was tweaked ever so slightly so that the data sets could be joined seamlessly. 
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A derived physical quantity is the growth rate. Look at the height of 120 cm at 7 years of age. If 
you then fast forward to 10 years of age, the height is 140 cm. The climb of the graph over 
these 3 years is a fairly straight upward slope. The slope of the line is the rise over the run. The 
slope gives the growth rate, which is a velocity – though a very, very slow one. 
 

rise 140 cm 120 cm 20 cm cm cm
growth rate = slope 6.67 7

run 10 y  7 y 3 y y y

−
= = = = =

−
 

 
A5. The Three Types of Physical Quantities. 
 
1. The Scalar. A scalar is a quantity that has a magnitude. You might wonder what else could a 
quantity have. You shall see shortly. For now, we just consider physical quantities with 
magnitudes. An example is temperature. You have a number and a unit such as 20 °C or 68 °F. 
The °C stands for degrees Celsius, while °F indicates degrees Fahrenheit. In the old days, the 
Celsius scale was known as the centigrade scale and one would have said in those days 20 
degrees centigrade for 20 °C. But in 1948, they renamed the scale Celsius in honor of the 
Swedish scientist Anders Celsius (1701-1744), who was a professor of astronomy. But he also 
did work in physics, mathematics, meteorology, and geology. 
 
Another example of a scalar is speed with its units of distance/time. But we can promote the 
speed to a new physical quantity, beyond scalar, one that also has direction. In such as case we 
can say that something goes 80 km/h to the east. This promotion takes us to the vector. 
 
2. The Vector. A vector has magnitude and direction. The magnitude part is a scalar, such as 80 
km/h. When you add the direction in there, you have a vector. We represent a vector as a line 
with an arrow that points in the proper direction. The length of the vector is a measure of the 
magnitude. When we promote speed to a vector, we use the term velocity. 
 
Distance, such as 5 meters, is a scalar. But if you say walk 5 meters north, now you have a 
vector. We use the term displacement for a distance with a direction. The table below 
summarizes these important concepts. 
 
 
 
 
 
 
 
 
 
 
 
 

Physical Quantities 

Scalar Vector 

distance displacement 

speed velocity 
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In the left figure we take 4 paces to the east. This 
segment (horizontal and blue) is our first 
displacement vector. Then we proceed north for 
3 paces (vertical and red). The net result is a 
distance of 5 paces with the angle shown. We 
have used the Pythagorean theorem to 
determine the length of the sum vector, which 
we call the resultant. 
 
Let r be the magnitude of the resultant. The 
magnitude is 
 

2 24 3 16 9 25 5r = + = + = = . 

 

The angle theta is found from tan 3 / 4 = . The angle is 1tan (3 / 4) 37 −= =  . The resultant is in 

the northeastern direction at a bearing of 37°  from the east. 
 

Note that we add vectors by 
joining the tail of one to the end 
of the other. You can move 
vectors around as long as you do 
not stretch them or rotate them. 
With such careful movement, the 
length and direction are preserved 
and therefore, the vector does not 
change. This feature is important 
for adding vectors. Walking along 
the vectors in our previous figure 
indicates that this method of 
addition is the correct one from a 
common-sense perspective. Let 

the symbol i  represent one step 

to the east and j  represent one 

step to the north. Then we can 
write for the sum vector, 
 

4 3r i j= + . 

 
The above expression is vector 
notation. Note the little arrow 
over the r. In three dimensions, 
we can write a vector as 
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r xi y j zk= + + , 

 

Where i , j , and k  are the unit vectors along each of the three dimensions: length, width, and 

height. 
 
See figures above and below for the unit vectors in each of the three spatial dimensions. Each 

point in the room has 3 coordinates: how many paces along the i  direction (which we can call 

x ), how many paces along the j  direction (which we can call y ),  and how many paces along 

the k  direction (which we can call z ). The each point in the room can be represent by 
coordinates ( , , )x y x . We can also draw a displacement vector from the reference corner to the 

point in the room. This displacement vector is then 
 

r xi y j zk= + + . 

 
Some texts use bold for a vector instead of the 
cute arrow on top of a letter. 
 

r = r  

 
 

 
 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

 

3. The Tensor. There’s more? Yes. An applied force vector is shown in the figure. Imagine 
someone with a blunt tool pushing on the board in the direction of the applied force vector. 
 

The board’s orientation is designated by the 
white vector that points outward and 
perpendicular to the board surface. The 
applied force has three components, one for 
each of the three dimensions. 
 

x y zF F i F j F k= + +  

 
But each of these three components can in 
general push the board inward, stretch the 
board downward, and stretch the board 
sideways. Therefore, there are nine possible 
stresses on the board. We can designate 
these as elements of a 3 x 3 listing of rows 
and columns, called a matrix. 

 

xx xy xz

kl yx yy yz

zx zy zz

  

   

  

 
 

=  
 
 

 

 
Such a physical quantity with some additional properties we will not go into is called a tensor. 
Specifically, this tensor is one of rank 2 because if has two subscript indices, indicated by k and l 
for row and column. There are tensors that can have more indices. Our course will not delve 
into tensor physical quantities. Scalars and vectors will keep us pretty busy. A vector can be 
thought of as a tensor of rank 1 and a scalar is a tensor of rank 0. 
 
On a personal note, I fell in love with tensors through a study of Einstein’s General Theory of 
Relativity (1915). The Einstein tensor field equations are shown below. 
 

4

8 G
G g T

c
  


+ =  

 

The G  piece is a tensor that describes the geometry of spacetime (four dimensions: 3 for 

space and 1 for time) due to the presence of matter and energy contained in the T  tensor. 

The tensor g  also describes aspects of the geometry of spacetime. The rest of the terms are 

constants. The constant   is the “infamous” or “famous” cosmological constant, G  is 
Newton’s gravitational constant (which we will cover in this course), and c  is the speed of light. 
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A6. The Metric System. The Metric System is used throughout the world, with a major 
exception being the United States. The Metric System was born in the 1790s during the French 
Revolution and spread throughout the world in the 1800s. Before the advent of the Metric 
System, England was the first country to industrialize, starting as early as 1760. It began using 
its own system of units for specs in manufacturing machines. The units used in England are 
described as the British System or the Imperial System. Examples of lengths in this system are 
inches, feet, yards, miles. The United States developed its system called Customary Units in the 
early 1830s, derived from the British System. While one might argue that the highly successful 
industrial revolution in the US made it very costly to switch at that time, it is hard to justify that 
in the 21st century, the US still holds on to its old established system of units. However, 
scientific journals published in the United Kingdom and the United States have adhered mainly 
to the Metric System for some time now. 
 

Countries Using the Metric and Imperial/US Customary Systems as of 2019 

 
Courtesy Goren tek-en, Wikimedia, Creative Commons 

 
Students in the US have a more difficult task learning physics since they are required to use the 
Metric System in their courses. However, the computer revolution has introduced many metric 
conventions as we shall see shortly. The Metric System is based on a prefix that stands for a 
power of ten such as 100, 1000, or 1/10. Below are three very common prefixes. 
 

Metric Prefix Abbreviation Value Sample Usage 

centi c 1/100 centimeter (cm) 

milli m 1/1000 millimeter (mm) 
kilo k 1000 kilometer (km) 

Next we will consider common Metric prefixes used in computer technology, though be careful, 
the computer folks define a kilo as 1024, the nearest power of 2 closest to 1000. 

Power of 2 0 1 2 3 4 5 6 7 8 9 10 

Value 20=1 21=2 22=4 23=8 16 32 64 128 256 512 1024 

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Metric prefixes are more common due to computer hard drives. When I went to school, I had to 
learn most of these since we didn’t have hard drives. The superscript with 10 means how many 
zeros follow the one. As an example, 103 indicates three zeros after the 1, which is 1000. This 
value is one thousand. This superscript is called powers-of-ten notation and it frees us from 
having to write down lots of zeros. A favorite of mine is 10100, 1 followed by 100 zeros, which is 
the googol, but this number does not have a metric prefix. My best friend in grade school told 
me about the googol and associated googolplex. The googolplex is a 1 followed by a googol of 
zeros. Think about that! I finally understood it by an analogy with a thousand = 103 and 
considering a 1 followed by a thousand zeros. 
 

Metric Prefix Abbreviation Description Numerical Value 

kilo k thousand 1,000 = 103 

mega M million 106 

giga G billion 109 

tera T trillion 1012 

If you spell googol as Google you get the famous search engine. If you spell googolplex as 
Googleplex, you get the building below. 
 

Googleplex Headquarters, Mountain View, California, USA 

Courtesy The Pancake of Heaven!, Wikimedia, Creative Commons 

https://commons.wikimedia.org/wiki/User:Biodev
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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The Metric System 
Below is a listing the metric prefixes Courtesy Wikipedia. Don’t memorize all of them. We will 
learn many throughout our course. 

SI Prefixes Courtesy Wikipedia 

Prefix Base 
10 

Decimal 

English word Adoption[nb 

1] Name Symbol Short scale Long scale 

yotta Y  1024 1000000000000000000000000  septillion  quadrillion 1991 

zetta Z  1021 1000000000000000000000  sextillion  trilliard 1991 

exa E  1018 1000000000000000000  quintillion  trillion 1975 

peta P  1015 1000000000000000  quadrillion  billiard 1975 

tera T  1012 1000000000000  trillion  billion 1960 

giga G  109 1000000000  billion  milliard 1960 

mega M  106 1000000  million 1873 

kilo k  103 1000  thousand 1795 

hecto h  102 100  hundred 1795 

deca da  101 10  ten 1795 

  100 1  one – 

deci d  10−1 0.1  tenth 1795 

centi c  10−2 0.01  hundredth 1795 

milli m  10−3 0.001  thousandth 1795 

micro μ  10−6 0.000001  millionth 1873 

nano n  10−9 0.000000001  billionth  milliardth 1960 

pico p  10−12 0.000000000001  trillionth  billionth 1960 

femto f  10−15 0.000000000000001  quadrillionth  billiardth 1964 

atto a  10−18 0.000000000000000001  quintillionth  trillionth 1964 

zepto z  10−21 0.000000000000000000001  sextillionth  trilliardth 1991 

yocto y  10−24  0.000000000000000000000001  septillionth  quadrillionth 1991 

1. ^ Prefixes adopted before 1960 already existed before SI. The introduction of the CGS system was 
in 1873. 

https://en.wikipedia.org/wiki/Metric_prefix
https://en.wikipedia.org/wiki/Decimal
https://en.wikipedia.org/wiki/Metric_prefix#cite_note-2
https://en.wikipedia.org/wiki/Metric_prefix#cite_note-2
https://en.wikipedia.org/wiki/Short_scale
https://en.wikipedia.org/wiki/Long_scale
https://en.wikipedia.org/wiki/Yotta-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#1024
https://en.wikipedia.org/wiki/Zetta-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#1021
https://en.wikipedia.org/wiki/Exa-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#1018
https://en.wikipedia.org/wiki/Peta-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#1015
https://en.wikipedia.org/wiki/Tera-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#1012
https://en.wikipedia.org/wiki/Giga-
https://en.wikipedia.org/wiki/1000000000_(number)
https://en.wikipedia.org/wiki/Mega-
https://en.wikipedia.org/wiki/1000000_(number)
https://en.wikipedia.org/wiki/Kilo-
https://en.wikipedia.org/wiki/1000_(number)
https://en.wikipedia.org/wiki/Hecto-
https://en.wikipedia.org/wiki/100_(number)
https://en.wikipedia.org/wiki/Deca-
https://en.wikipedia.org/wiki/10_(number)
https://en.wikipedia.org/wiki/1_(number)
https://en.wikipedia.org/wiki/Deci-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#10.E2.88.921
https://en.wikipedia.org/wiki/Centi-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#10.E2.88.922
https://en.wikipedia.org/wiki/Milli-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#10.E2.88.923
https://en.wikipedia.org/wiki/Micro-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#10.E2.88.926
https://en.wikipedia.org/wiki/Nano-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#10.E2.88.929
https://en.wikipedia.org/wiki/Pico-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#10.E2.88.9212
https://en.wikipedia.org/wiki/Femto-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#10.E2.88.9215
https://en.wikipedia.org/wiki/Atto-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#10.E2.88.9218
https://en.wikipedia.org/wiki/Zepto-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#10.E2.88.9221
https://en.wikipedia.org/wiki/Yocto-
https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)#10.E2.88.9224
https://en.wikipedia.org/wiki/Metric_prefix#cite_ref-2
https://en.wikipedia.org/wiki/Centimetre%E2%80%93gram%E2%80%93second_system_of_units
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Unit of Mass: The gram 
 

 
 

A US penny has a mass of 2.5 grams (2.5 g). 
Courtesy United States Mint (Public Domain) 

 

 
English: Antique Computing Scale Co. scale still in use in shop in Röthenbach, Switzerland 

Courtesy GabrielleMerk, Wikimedia, Creative Commons 

https://commons.wikimedia.org/wiki/User:GabrielleMerk
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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A7. Working with Units. 0. The Trick. My chemistry teacher in college taught me the trick with 
setting up units and watching them cancel. It was my freshman year in Fall 1968. 
 

Dr. William A. Kriner, Chemistry Professor 
St. Joseph’s College (now University) 
Philadelphia, Pennsylvania, USA 
Photo St. Joseph’s College Yearbook: 1972 Greatonian 
 
Here is a simple example and why it works. Consider 
converting 2 hours to minutes. You write down the 2 
hours and then note that 1 hour = 60 minutes. Since 1 
hour = 60 minutes, you can write this relation as 
 

60 min
1

1 h
=      or     

1 h
1

60 min
= . 

 
In each case, you have unity. Multiplying anything by unity 
does not intrinsically change anything, but it can convert 
the units. 
 

60 min
2 hours 2 h 1 2 h 120 min

1 h
=  =  =  

 
1. Text. Question 1: Given one byte per character, estimate in megabytes (MB) what storage is 
necessary for a 400-page book (no photos). 
 
We would like to estimate the storage capacity of a book with no illustrations or photos. We 
can start with how many characters are there in a line of text. If you count the characters in a 
line of this book you are reading now, you will find about 90 characters in a line. Remember, we 
are estimating. If you count the number of lines on a page, you get 40 to one significant figure. 
We are shooting for characters per book. The following dimensional analysis encapsulates our 
reasoning. 

char char lines pages

book line page book
=    

 
Using our values with a 400-page book, we have 
 

char 90 char 40 lines 400 pages char
1,440,000

book line page book book
=   =  

 
Notice how several of the units cancel, leaving you with what you want. Since each character 
(char) is a byte, our book needs 1,440,000 bytes. What about kilobytes (kB)? Remember that 1 
kilobyte is 1024 bytes since in computer science, a kilo = 1024. 
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kilobytes bytes 1 kilobyte
1,440,000 1406 kilobytes

book book 1024 bytes


=   =  

 
For Megabytes we proceed with the following conversion of units, using 1 Megabyte = 1024 
kilobytes. 
 

Megabytes kilobytes 1 Megabyte
1406 1.4 Megabytes 1.4MB

book book 1024 kilobytes


=  = =  

 
The Library of Congress has about 40 million books. Assuming for now no pictures or photos, 
we will work up to the storage needed for 40 million books of text. 
 
 
 
 
 
 
 
 
2. Images. Question 2: What storage space in kB do you need for an image 800 x 640 pixels with 
24-bit color depth per pixel and with a 1:10 jpg compression ratio? A byte is equal to 8 bits. 
 

24 bits 1 byte 1 kB 1
800 640 pixels 150 kB

pixel 8 bits 1024 bytes 10
     =  

 
To estimate a book with 40 images, we can add an additional 40 x 150 kB = 6000 kB = 6 MB. 
Note that for quick estimates we can take 1024 = 1000. Adding the 6 MB to the 1.4 MB found 
earlier and rounding up, we arrive at 10 MB per book. 
 
 
 
 
 
 
 
 
The next hard drive size would be a petabyte (PB), where 1 PB = 1024 TB. A petabyte drive 
should do it. By the way, the 24-bit color depth refers to 8 bits for each primary red, green, and 
blue. Each primary color has 8 bits = 1 byte of data. 

Number of Books (Text Only) Storage 
1 1.4 MB 

1,000 1.4 GB 

1,000,000  1.4 TB 

10,000,000 14 TB 
40,000,000 56 TB 

Number of Books (with images) Storage 

1 10 MB 

1,000 10 GB 

1,000,000  10 TB 
10,000,000 100 TB 

40,000,000 400 TB 
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3. Audio. Question 3: For CD sound, given 16-bits per stereo channel and a sampling rate of 
40,000 1/s, estimate the storage necessary for 70 minutes of music. 
 

16 bits 2 channels samples 1byte 1kB 1MB 60 s
40,000 70 min 640 MB

channel sample s 8 bits 1024 bytes 1024 kB min
       =  

 
A CD with 650 MB of storage holds 74 minutes of music. We essentially obtained this result! We 
have roughly 650 MB/74 minutes = 8.8 MB/min. With mp3 compression, you can get this down 
to 1 MB/min, which is about 3 MB for a three-minute song. The compression will reduce the 
quality of the audio, but if you don’t notice it hardly at all, that is a good thing. 
 
Apple came out with a media player called the iPod in the early 2000s. If you had one with a 
120 GB hard drive, you could store 
 

1 song 1024 MB
120 GB 41,000 songs

3 MB 1 GB
  =  

 
iPod 5th Generation, 2005 
Courtesy Stahlkocher 
Wikimedia, Creative Commons 
 
Sometimes audio transfer of data is 
given as a bit rate in kilobits per 
second. Without compression, 
 

650 MB 1024 kB 8 bits 1 min

74 min 1 MB 1 byte 60 s
    

 
kb

1200 1200 kb/s
s

= = , 

 
where little b stands for bits. If we 
kick in mp3 compression, we divide 
by 8 and find 150 kb/s. 
 
Typical audio bitrates for streaming 
are 64 kb/s for low quality, 128 
kb/s for DVD 720x480 pixel videos, 
and high quality 256 kb/s for 
1920x1080 pixel video. 

 
 

https://commons.wikimedia.org/wiki/User:Stahlkocher
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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4. Video. Question 4: For a DVD video of 720 x 480 pixels per frame, 24-bit color depth per 
pixel, 30 frames per second, and a compression ratio of 40, find the GB storage space needed 
for a 2-hour movie. For the audio, use the result of the previous problem with a compression 
ratio of 4. First we do the video. 
 

3

720x480 pixels 30 frames 60 s 60 min 24 bits 1 byte 1 GB 1
2h 5 GB

frame s min h pixel 8 bits (1024) bytes 40
        =  

 

For audio: 
640 MB 60 min 1 1 GB

2h 0.3 GB
70min h 4 1024 MB

    = . 

 
The total storage is 5.3 GB 5 GB=  to one significant figure. With a terabyte hard drive, you 
can fit 

1 movie 1024 GB
1 TB 200 movies

5 GB TB
  = . 

 
The Scale of Things 
Courtesy Nano.gov 
 
With a futuristic petabyte hard drive, you can 
have 200,000 movies. Alexa, the Amazon 
assistant, says there are about 500,000 movies 
in existence today. Now we have been using 2 
hours for movie. But most movies are shorter. 
So a petabyte comes close. 
 
DNA can code up to about 100 petabytes. So if 
scientists of the future use nanotechnology to 
get this kind of data storage on a single disc, 
we should be able to easily include all the 
movies, all the music recordings, and all the 
books including those with figures. 
 
The prefix nano in nanotechnology is a metric 
prefix equal to a billionth, i.e., 
 

9

9

1 1
nano n 10

1,000,000,000 10

−= = = = , 

 
where the minus sign in a power of ten means we take 1 over that number. Think of the minus 
sign in the exponent as “th” so we have billionth (-9 exponent) instead of billion (+9 exponent). 
Nanotechnology deals with sizes in the range of 1 nanometer to 100 nanometers, which we 
abbreviate as 1 nm to 100 nm. See the above figure for a sense of scale. 

https://www.nano.gov/nanotech-101/what/nano-size
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In this futuristic scenario, say everyone pays a monthly fee to have everything. Then you could 
get a small 100-petabyte hard drive disc to put in your pocket and you have everything covered. 
But more likely, everything will be streamed and you will not need much personal hard storage 
anyway on a local machine. Everything will be in the Cloud. 
 

 
Cloud Photo by Doc from Airplane, 2013 

 
HP-15C from the 1980s 
Courtesy Hic et nunc 
and Pittigrilli, Wikimedia 
 
A8. Which Calculator Should 
I Use? I recommend a 
calculator that does not use 
parentheses. Such a 
calculator was the world’s 
first pocket calculator, 
developed by Hewlett-
Packard. It was the HP-35 
and the year was 1972. HP 
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calculators do not use parentheses, but instead, employ Reverse Polish Notation (RPN). HP 
calculators became very popular among scientists and engineers. 
 
But algebraic notation, which uses parentheses, though conceptually easier for non-scientists, 
is not as good. Such is unfortunate since many educational systems push the algebraic 
calculators in lower grade levels. Below is an abstract from a research study that confirms RPN 
is superior to algebraic. 
 

“Two carefully matched calculators using different logic systems were compared using 
subjects experienced in each logic system. Reverse Polish Notation (RPN) proved superior to 
Algebraic Notation (AN) in all comparisons, although the differences in overall speed and 
accuracy were smaller than had previously been found. A classification scheme for user 
behavior was derived and used to show that the superiority of RPN was due to elimination 
of sequence errors and reduction of unnecessary steps in performing calculations.” D. M. 
Kasprzyk, C. G. Drury, and W. F. Bialis, “Human Behavior and Performance in Calculator Use 
with Algebraic and Reverse Polish Notation,” Ergonomics 22:9, 1011-1019, 1979. 

 
Here is a summary of my reasons for the RPN: 
 
1. Hewlett-Packard, a great company, picked RPN for their calculators (first pocket one in 1972). 
2. Entering numbers, then the operation, eliminates parentheses. 
3. With RPN you learn about the stack, which is an important concept in computer science. 
4. Research studies confirm the superiority of RPN: less keystrokes and less errors. 
 
I use the HP-15C app on my iPhone 11 Pro Max, which app is identical to the actual HP-15C 
calculator of the 1980s. The app cost a few dollars. The size of my iPhone 11 Max Pro is about 
the actual size of the original HP-15C that I purchased in the early 1980s. It was $179, which 
was a lot of money back then and still is for a calculator. I have used the HP-15C for my entire 
career. If you have never used RPN, it is worth learning and giving RPN a chance. You can find 
YouTube videos on the topic. 

 
Here is an example of such a YouTube video. 
 

The Joys of RPN 
 
The video compares algebraic and RPN logic. It 
even uses a calculator that lets you switch 
between algebraic and RPN modes. Check it out. 

https://www.youtube.com/watch?v=cPKg_JtI-Ys

