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Chapter Q. The Laplacian - Solutions 
 
HW Q1. The Electric Field. 
 
In the second semester of introductory physics with calculus the uniform sphere of 

charge with total charge Q  radius R  is usually addressed. The charge density is 
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(a) Use Gauss’s law to show that the electric field for r R  is 
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(b) Use Gauss’s law to show that the electric field for r R  is 
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(c) Calculate E 


 for r R . 

 

(d) Calculate E 


 for r R . 

(e) Explain your answers to (c) and (d) in light of the Maxwell equation 
0

E
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
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. 

Note: For full credit all equations must have correct notation, e.g., vector quantities need 
to have arrows above them or carats for unit vectors, and a vector equation must have 
vector signs on each side of the equation. 
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Solution. 
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(c) E 
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 for r R      =>     2

0

( )
4

out

Q
E r r

r 






 

Spherical Coordinates 
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Since 0E   and 0E  , we are left with only 2
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(d) E 
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(e) The Maxwell equation is satisfied. 
 

Outside is free space where there is no charge density. Therefore 0outE  
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. 
 

Inside the sphere we have a density  . Therefore, 
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HW Q2. Poisson’s Equation. Consider cylindrical coordinates defined with the notation 

as shown in the figure. You will see there a long cylinder which you can take to be 

infinite in length along the z-axis. It has radius r a  and charge density 

( )r r  . 

The following equations, one of which 
includes the Laplacian, describe the 
physics of the electric potential V and 
electric field E. 
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(a) Solve Poisson's equation (the one with the Laplacian) in the charge region using 
cylindrical coordinates to obtain the following with integration constanta A and B: 
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, where “in” refers to r a . Out means r a . 

(b) Give a physics reason why the integration constant A  should be taken to be zero. 

Then take the negative gradient of your potential to find in ( )E r
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. Integrate the charge 

density to find the total charge Q  for a section of length h  of the cylinder having the 

full radius r = a. Then divide by h  to find the linear charge density 
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Solution.   
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Cylindrical coordinates with the notation given in this problem. 
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Take 0A   as (0)V  must not blow up to infinity. 
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