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Chapter Q. The Laplacian 
 
HW Q1. The Electric Field. 
 
In the second semester of introductory physics with calculus the uniform sphere of 

charge with total charge Q  and radius R  is usually addressed. The charge density is  
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(a) Use Gauss’s law to show that the electric field for r R  is 
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, and that it can be written in the form 
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(b) Use Gauss’s law to show that the electric field for r R  is 
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Note that 
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(c) Calculate E 


 for r R . 

 

(d) Calculate E 


 for r R . 

(e) Explain your answers to (c) and (d) in light of the Maxwell equation 
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Note: For full credit all equations must have correct notation, e.g., vector quantities need 
to have arrows above them or carats for unit vectors, and a vector equation must have 
vector signs on each side of the equation. Exception: zero does not need a vector sign 
over it. 
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HW Q2. Poisson’s Equation. Consider cylindrical coordinates defined with the notation 

as shown in the figure, i.e., (r,,z). You will see there a long cylinder which you can take 

to be infinite in length along the z-axis. It has radius r a  and charge density 

( )r r  . 

The following equations, one of which 
includes the Laplacian, describe the 
physics of the electric potential V and 
electric field E. 
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(a) Solve Poisson's equation (the one with the Laplacian) in the charge region using 
cylindrical coordinates to obtain the following with integration constants A and B. 
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, where “in” refers to r a . Out means r a . 

 

(b) Give a physics reason why the integration constant A  should be taken to be zero. 

Then take the negative gradient of your potential to find in ( )E r


. Integrate the charge 

density to find the total charge Q  for a section of length h  of the cylinder having the 

full radius r = a. Then divide by h  to find the linear charge density 

Q
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a  and  .  You can check your answer by plugging your   into the classic electric-

field formula for a line of charge: out
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