oModern Optics, Prof. Ruiz, UNCA
Chapter Q. The Laplacian

Q0. Wave DE (Differential Equation).

Earlier we found in one dimension.

x> v at?

The two-dimensional differential wave equation is

Py Oy _10y
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The three-dimensional differential wave equation is
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Q1. Operator Notation.
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Pierre-Simon Laplace (1749 — 1827)
Known in physics/math/engineering especially for the
Laplacian and the Laplace Transform

Due to his superb intellect and accomplishments, he
became known as the “Newton of France.”

The Laplacian is defined below.
o° o° 0

Vie——+—+
8X2 ayZ 522

We can now write the three-dimensional wave equation in
a compact form.

1 o’y
M
We can also write
10w _,
o VO

iaZQ//_aZW_GZQ//_aZI// _O
¢’ ot* ox* oy oz’
Whenever space and time appear like Czt2 — X2 =0 or Czt2 —Xx° - y2 7%= 0 ,

The equation is consistent with Einstein’s Theory of Relativity.
We say the equation is relativistically invariant.
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1 6° 0  0* o
The combination C_z ot2 _(8X2 + ayz + 522) qualifies.

When Einstein comes along, Einstein refers to the variables as four dimensions.
The time dimension must be added in the form of ct or ¢ dt so the dimensions agree.

Jean le Rond d’Alembert (1717 — 1783)
Mathematician, Physicist, Music Theorist

Known to the general population as the co-editor
with Denis Diderot of the first encyclopedia.

Discoverer of the Wave Equation in One Dimension
2 2
Oy 10y
o VA
The general solution we gave earlier to the one-

dimensional wave equation is also due to
d’Alembert.

w(x,t)=f(x—vt)+g(x+wt)

The d’Alembert operator, commonly known as the d’Alembertian, is named after him. It is also
called the box operator:

=i82_82+82+82
S ctott oxP oyt ozt

Now the wave equation in 3D (three spatial dimensions are implied) is super concise!

[y =0
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Q2. Coordinate Systems. Everything is much simpler in Cartesian coordinates.

2
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René Descartes (1596 — 1650)
Philosopher, Mathematician, Physicist

Known for philosophy: “I think, therefore | am.”
Often called the “father of modern philosophy.”

The Cartesian coordinate system (x,y).
Developed Analytic Geometry.
Gave a Derivation of the Law of Refraction.

Calculated the 42° for the Primary Rainbow before the
advent of calculus!

The Laplacian takes on its simplest form in Cartesian

0>  0* o
+—+
aXZ ayZ aZZ .

a) Cartesian Coordinates (x,y,z).

When z = 0, you get the very
popular (x,y) plane system.

b) Cylindrical Coordinates (p,,z)

When z = 0, you get polar
coordinates: (p,9).

c) Spherical Coordinates (r,$,0).

All three coordinate systems are
shown in the left figure. Note that
each coordinate system has its
unit vectors.

Very Important Observation: Unit

vectors for r, ¢, 0, and p are NOT
constant!
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With various coordinate systems, the Laplacian is often used in physics, chemistry, and
engineering.

Mechanics — Poisson’s Equation:

2
\% ¢= 47TG,0,Where ¢ is potential, £ mass density.

Electromagnetic Theory — Poisson’s Equation in Electrostatics:

Vig=—L

o

, Where ¢ is potential, £ charge density.

Thermodynamics — the Heat Equation:

ar _ aVeT
ot

, Where T is temperature.

Quantum Mechanics — the time-independent Schrédinger Equation:

2
—;—m Vi +Vy =Ey
Optics — the Wave Equation:
1 0w
2
ey

Have you ever encountered the Laplacian in spherical coordinates?

10 o ,. .0 1 0°
Vi==—(r' =)+ = (Sin0—)+——— _
ror or r°sindof 00" r°sin“ 6 o¢

Yikes!

To understand the above operator in spherical coordinates, we turn to curvilinear coordinates.
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Q4. Curvilinear Coordinates. Remember your volume elements in Cartesian, cylindrical, and
spherical coordinate systems? The easy one to remember is the (dx)(dy)(dz) of Cartesian
coordinates. Below | show you how to get the spherical and cylindrical cases.

z

dz Cartesian: 0V = dxdydz
a5 cylindrical: dV = pd pdgdz
Spherical: dV = I’2 Sin erd Hd¢

Refer to the left figure to get the spherical volume
element of the cute cube-like blue volume.

dV = (dr)(rd&)(rsin 6d9)

dV =r’sinddrdad ¢

To get the cylindrical case, increase @ to 90° so that
" s\nadﬁ? you are lowering the volume element in the figure by
swinging it down. In the x-y plane

(dr)(r sin 9)d¢ —> (dp)(pd¢) and rd@ — dz 1o arrive at dVv = ,Od,Od¢dZ . But

it is simpler to think polar coordinates first and write (d ,0)(,0d ¢) in the x-y plane for the polar
coordinates. Then, tack on dz for the third dimension.

All three of our coordinate systems have volume elements of the

form
dV = (h,du)(h,dv)(h,dw)

u \" w h1 h2 h3
X y z 11 1
p | ¢ |z |1 p] 1
r 0 ) 1 | r |rsind

The general cases of such coordinates are called curvilinear coordinates. The volume
element in the upper figure on this page really has “curvy” lines for several of the little delta

A ~

lengths. The unit vectors are U, V and W . Lots of books use the notation for the coordinates

AN ~

as x1, X2, and X3 or gz, g2, and gz . Unit vectors are also commonly €1, €2 and €3.
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2
Q5. The Gradient. We will build up to \% W eventually. First consider something simpler, the
gradient.

S Ax \)? TmAU\\AG

f(x,y,2) f(x+AX,y,2) fluv,w)  flutAuvw)

df . f(X+Ax)—f(X)

Derivative: & = AI)I(LnO Ax

o . T(X+AxYy,2)-1(XY,2)

. - — =1]im
Partial derivative: OX M0 AX

f(x+Ax)—f(x)}?:df?

o . grad f =| lim
Directional derivative: g [ AX—>0 dx

f(x+AXx,y,2)—f(X,y,2) | of =
Directional partial derivative: grad f= |: AI)I(TO AX I= OX I
f(u+Au,v,w)— f(u,v,w) 1 of ~
Curvilinear version: grad f _{AIJTO hlAU Eau
~of ~of nof
Cartesian coordinates: grad f =V =1 & T Ja_}_ ka
Vi = glaerglaerglaf
= 1—— 1——+6——
in genersl hog, ~hog, hag
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Gradient Summary

~of ~of rof
Cartesian: v =i OX + 3)/ +k o7

~of ~lof ~of
o VE=p—t+gp——+k—
Cylindrical: a ¢ a¢ az

rof ~1of » 1 of
g VE=Ir—+¢——+
Spherical: or ¢ r 06 9 rsiné o¢

We have promoted the function f to a vector. When we have something like temperature with

its single magnitude value such as 20° C, we call it a scalar. See the map below with
temperatures.

CURRENT TEMPERATURES
20 90 -0 010 20730740 50 60 70 80 90 100 110

3 3~« 45 . - ‘K
37 42 407 33, -5

é] 79
79 Twheealhc-r
Channel

__weather.com

10 Jan 2013 18:15 GMT / 10 Jan 2013 01:15 PM EST
Courtesy The Weather Channel

If we have an entity with magnitude and direction, we call it a vector. The gradient promotes a
scalar to a vector. See the next figure for an example of a gradient plot. The gradient plot gives
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little vector arrows. The length of the vector indicates its strength or magnitude and the little
arrow gives the direction. Wind speed and direction together make up a vector quantity.

0 2 4 6 8 10 12 14 16 18 20 m's 45
HEENT 2 2 THE

0 5 10 15 20 25 30 35 40 45 mph
Courtesy Weather Underground, Inc.

Wind velocity has magnitude (the speed) and direction. The length of the vector arrows indicate
the magnitude of the velocity and the arrow points in the direction of the wind. Technically,
speed is a scalar, the magnitude. When you promote speed to a vector you add the direction.
However, often velocity is used informally for just speed.

Charge Image Courtesy Tony Wayne

Here is a vector field produced by a plus charge. Note the
symmetry as all vectors points outward away from the
positive charge. Also note that the lengths of the vectors
decrease as you get farther away from the charge. The
strength weakens according to the inverse square law. In
contrast to the weather case, this field has a simple
formula.

Q6. The Divergence. Here is a simplified derivation of the
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divergence theorem in Cartesian coordinates.

z
Etop
Az
E=E(xy,2) k A
Ebo||tom Ay
AX
y

AA = Ax Ay k for the top panel

AA = AXx Ay (-k) for the top panel

We are interested in calculating the flux
through the enclosed surface, which we write
as

E-dA

we have Epgom = E, (X, ¥,2) andits
counterpart Etop =E, (X, y,2+Az).

The net flux out of the surface of our cube is
given by multiplying the magnitude of the
perpendicular vector component that pierces
each surface. Here we have top and bottom.
We subtract what goes in from what goes out.

E-dA=> E,(X,Y,Z+Az)AXAy — E, (X, Y, Z)AXAy

—_— —

E-dA=>

E,(X,y,2+Az)-E,(X,Y,2)

AXAYAZ

Az

— Z
Cf:ﬁE-dA— JH P dxdydz e teft surface integral and right volume integral.

ok
v % dxdydz

fpea- [ %

_|_
oy oz

The Divergence Theorem: @E ' d—A) = _”:|:V ’ E:| dv :

~ OE
v E_OE OB oE

The divergence in Cartesian coordinates is OX ay oz
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hw(u,v,w-\FAw)Au CﬂD E : d—A)

ElOD(u!V’W+AW) We have Ebottom - EW (u’ V’ W) and
its counterpart

E., =E,U,V,W+Aw)

top

ha(u,v,w+Aw)Av

h.(u,v,w) Av
The net flux out of the surface of our
small enclosure is given by multiplying
Eootom(U,V,W) the magnitude of the perpendicular

vector component that pierces each
surface. Here we have top and bottom. We subtract what goes in from what goes out.

Cﬁs E : ﬂ => [ Ew (hlAU)(hZAV)](U,V,W+AW) B [ EW (hlAu)(thV)](u'V'W)

hi(u,v,w)Au

{pE dA= [Ewhlhz\ o — iy (U’V’W)]AUAV

c_ﬂ}E dA=> A(E, hh,)AUAv = %AUAVAW
w

@E-ﬁz> MAUAVAW
oW

gpE A= [ XD qugvanw

dv = (hdu)(hav)(haw) - PE-dA=[] a(Eévv%hZ) mh12h3 dV

S O(E,hphy) | AENh) A(ENN)] 1
§pE A= m[ i -0 }hlhzhgdv

The dlvergence in curvilinear coordinates is
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V-Ez 1 [G(Euh2h3)+5(Evh1h3)+8(EWh1h2)_
hhh|  ou ov ow

v.E-_! {G(Elhzf‘s)+5(Ezhhs)+@(E3hlh2)_
hlh2h3 5(:]1 5C|2 6(:]3

Cartesian: (ql’ q21q3) = (X’ Y, Z) and (hp h2, h3) = (11 1, 1) .

_ OE
v.E_CE OE GE
ox oy @z

Z

Cylindrical: (ql, d,, q3) = (,0, ¢1 Z) and (h11 h21 h3) = (1' p,l) .

O(E,pY) AE, 1) 4 1 p)
op 0 oz

V.-E =

1
1. p-

[

V.E=

1 + +
p Op p 0p 01

Spherical: (Qy qzlqg) = (I’, 0, ¢) and (hl’ hz’ h3) = (1’ r, rsin ‘9) .

v.E 21_ O(E,r rS|n49)+a(E9 1 rsm6?)+ (E,-1-1)
r-sinéd or 06 0P
— 2 ' ok
V.E:iﬁ(r Er)+ 1 a(sm@Eg)+ 1 s

r’ or rsin@ o0 rsin@ o¢

Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International



Q7. The Laplacian. Recall earlier that we defined the Laplacian as

A A A A 2 2 2
V.V= (I£+J£ —) (|—+Ji+ g)_é 82+52
ox "oy oy OX? 8y or” -

2
It is instructive to consider this operator as actually operating on something: A%

2
We see that the Laplacian of a function, i.e., Ve , Is equivalent to applying the divergence to

2
the gradient of a function: vVif=V. (Vf ) . We start with our previous general result for the
gradient

gl vaty 1oy

hog h,og, hyoq,

and then use our previous result for the divergence

v Aot F(Ahzhz) L O(ANN) 8(A3hlh2)}
ot o g, od, |

where A=Vf . So we substitute into V * A our components of A=Vf , Which are

1 of 1 of
A i AR AR

2
Then we obtain for VY f the following.

1 o ,1 of o ,1 of o ,1 of
hhh, Laql Gag ™ o, oo, e o,y 2, hlhz}}

This expression simplifies to
o1 {a (Moo 0y 0 hh 0, 0 hh a)}
hhh|og " h oq° dq, h, o0, 60, hy og,” |
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Cartesian: (ql’ qz,q3) = (X’ Y, Z) and (hl; h2, h3) = (1’ 1, 1) :

| ) ()

) 1|10 ,110 o 11 0 o 11 0
V= + ( )
ox 1oy o9, 109, o009, 1 0q,

o> o0° 0
+—
ox>  oy* o1’

Cylindrical: (qll d,, qs) = (,0, ¢’ Z) and (hl, hzi h3) = (1’ /0’1) .

vr_ 1 [G(p-lﬁ)Jr@ 1.1 6 1,05}

l-p-1l0p 1 Op 8¢(p 8¢) 82( 1 oz

V?=

2 _ 10 0 1 0 0
\% pP—)+——=+—;
poOp  Op p°o0p~ o0z

Spherical: (q1’ qz,q3) = (I’, o, (b) and (hl, h21 h3) - (1’ r,rsin ‘9) .

1 {a r-rsind o alrsmea+a 1-r a}

1-r-rsin@| or 1 ) ( r 060 0¢ rsind og¢

V? =

v _ 1 o,. 0 1 &

sin@ +
r’ Gr( 8r rsineaﬁ( 86?) r’sin® @ o¢°
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Many years ago Mr. Samuel S. Ensor, my Calculus teacher
at St. Joseph's College (SJ) in Philadelphia (University since
1978) gave us a project in Calculus Il that was long, but very
useful and productive (Spring 1969). It is given below.
Everyone aspiring to be a physicist or engineer should do
this calculation once sometime in their studies. It will correct
any rough edges you have in taking partial derivatives and
using the chain rule.

Recommended Problem for a Semester Break. Derive the
Laplacian in spherical coordinates the long way! Start
with

o> o° 0
VE = >t T
ox’ oy’ oz
SAMUEL S. ENSOR and
Photo Courtesy X=rsin@cos¢, y=rsindsing, z=rcosg.

Ancestry.com, scan from

the Greatonion, SJ 1953 _ _ _
Yearbook So you begin cranking away with

0 _0ro 000 043
X oxor  ox 00 axa¢a“ds°°”

Have fun!

Q8. Bonus: Two Maxwell Equations in Differential Form.

fpEa-([[vEl  gpBai=[[[v-eo

gd—A):O => V§:0

_’_’_ E=-F
JpE-dA=—= —mpdv . VE—go
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