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Modern Optics, Prof. Ruiz, UNCA                                doctorphys.com 
Chapter M. EM Waves and Light Speed 
 
M0. The Wave Equation. Light is an electromagnetic wave. Therefore, optics is intimately 
connected to electricity and magnetism, i.e., electromagnetic theory. We first derive the general 
wave equation so we can recognize it when we encounter specifically EM waves later. From our 

last class, we start with a function traveling to the right:  ( , ) ( )x t f x vt = − . Let 

u x vt= − . Note that 1
u

x


=


 and 

u
v

t


= −


. Then we take derivatives in our quest for the 

"magic" differential wave equation, 

( , ) ( ) ( ) ( ) ( ) ( )
1

x t f x vt f u df u u df u df u

x x x du x du du

  −  
= = = =  =

   
 

 

( , ) ( ) ( ) ( ) ( )
( )

x t f x vt f u df u u df u
v

t t t du t du

  −  
= = = =  −

   
. 

 
We can now put together the following differential equation from the above. We find 
 

( , ) 1 ( , )x t x t

x v t

  
= −

 
 and write 

( , ) ( , )1R Rx t x t

x v t

  
= −

 
, 

 
adding the subscript R for "Right" to emphasize that this wave is traveling down the x axis in the 
positive direction. 
 
But for the wave traveling to the left, we must have the same equation with the velocity in the 
negative direction. This reverses the sign in front of v since u in that case would be u = x + vt 
with f(u) = f(x+vt). Now I know I said to use sin(-kx – vt) in the previous chapter for left-traveling 
waves per my publication with Perkins, but this sine function is of the form f(x+vt) and we will be 
okay here. 

( , ) ( , )1L Lx t x t

x v t

  
= +

 
. 

 
This is not acceptable because now we have two differential equations and there is nothing 
special about right or left. We want a differential equation where the sign does not matter. So we 
proceed to the second derivative since we know that second-order differential equations have 
two independent solutions. We continue from 

 

( , ) ( )x t f x vt = −    and   u x vt= − , 
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( , ) ( )x t df u

x du


=


   and   

( , ) ( )x t df u
v

t du


= −


, 

 
and take the second derivatives with respect to x and t. 
 

2 2 2

2 2 2

( , ) ( ) ( ) ( )x t df u d f u u d f u

x x du du x du

  
= = =

  
 

 
 

2 2 2
2

2 2 2

( , ) ( ) ( ) ( )x t df u d f u u d f u
v v v

t t du du t du

   
= − = − =    

. 

 
This leads to 

2 2

2 2 2

( , ) 1 ( , )x t x t

x v t

  
=

 
 

 
Note that when you square plus or minus v that you get positive v squared. This differential 
equation applies to waves moving to the left or to the right. This is the wave equation in one 
dimension. The general solution is a combination of a wave moving right and one moving left: 
 

( , ) ( ) ( )x t Af x vt Bg x vt = − + +  

 
Just be careful. In practice it is best to use the forms from the last chapter, with the minus sign in 
front of the x for left-traveling waves per Perkins and Ruiz (2018). 

( )( , ) i kx t

right x t Ae  −=           
( )( , ) i kx t

left x t Ae  − +=  

M1. Gauss’s Law. We next need to develop the theoretical foundation for electromagnetic 
theory. You have seen the Maxwell equations in introductory physics where, they used the 
integral form for them. We review them now, starting with the first Maxwell equation, Gauss’s 
Law. 
 
The first Maxwell equation is a restatement of Coulomb's Law in a form we call Gauss's Law. 
Coulomb's Law is 

2E

kQq
F

r
=  where the constant 

0

1

4
k


=
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in the Meter-Kilogram-Second system of units. This form of the Metric System is often called the 

MKS system for short. The constant 0  is called the permittivity of free space. Note the 

similarity with the form of Newton's Law of Universal Gravitation below. 
 

2G

GMm
F

r
=  

 
 
 
 

2E

kQq
F

r
=  

 
 

Both are inverse square laws. The Q represents charge, replacing the M which represents 
mass. The r is the distance between the centers of each mass or charge. Sometimes you see a 
minus sign in front of the gravity equation to remind us that the force is attractive. With the 
charges, when they are opposite in sign, you get the attraction. 
 
Think about these properties called mass and charge. A fundamental force in nature means we 
endow matter with a property that goes with the force. For gravity it is mass M (or m). For the 
electric force, it is charge Q (or q). If you have mass, you experience gravity. If you have charge, 
you experience the electric force. 
 
We define force fields for gravitation and the electric force by taking the smaller mass m to be 1 
and the smaller charge q to be 1. Then we have forces per unit mass or charge: 
 

2

GM
g

r
=    2

kQ
E

r
=  

 
Consider a charge Q at the origin and make a sphere 
at distance r to surround this charge. The electric field 
at a distance r from the charge is 

 

2

kQ
E

r
=  

 
Since our force is a vector and will point outward for a 
positive test charge q, we write this in vector form as 
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2

kQ
E r

r
= . 

The r


 vector is a unit vector pointing away from the charge Q. Its precise direction depends on 
where you are on the sphere. This feature is unlike your unit vectors in Cartesian coordinates, 

i


, j


, and k


, which always point in the same directions. We proceed to define a differential 

patch of area on the sphere and give it a unit vector direction outward. This approach is 
common practice with areas, i.e., to define area orientations with unit vectors perpendicular to 
the surfaces. When you come to think of this, that is the most convenient way to tell someone 
how to orient a plane piece of paper - by a unit vector perpendicular to the paper for the 
direction you want. 
 

dA rdA=  

 

Don't worry about the actual details for dA  as we will not need explicit expressions. We will be 

talking at the most fundamental level for the most part. We want to take E d A
→ →

  and integrate 

over all the area on the sphere. When we integrate over a closed area we include a nice loop to 
emphasize that our area encloses on itself: 
 

E dA  

 

Let's do this integral. We have 2

kQ
E r

r
=  and dA rdA= . Then, 

 

2

kQ
E dA r rdA

r
 =   . 

The dot product r r
 

  is equal to 1 since a dot product of any unit vector with itself is 1. The dot 
product between two vectors is the multiplication of the magnitudes times the cosine of the 
angle between them. The angle between a vector and itself is zero. 
 

2

kQ
E dA dA

r
 =   

 
Since we have a sphere here with a radius r that does not change and we want the surface 
area, we can pull out the constants: 
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2

kQ
E dA dA

r
 =  . 

 
This equation might still look scary but the integral is simply the surface area of a sphere. You 

know this. It is 
24A r= . So we get 

2

2
4 4

kQ
E dA r kQ

r
  = = . 

Note that our constant 
0

1

4
k


=

. So we wind up with 

0 0

1
4 4

4

Q
E dA kQ Q 

 
 = = =  

 
This form is called Gauss's Law and it is our first Maxwell equation. 
 

0

Q
E dA


 =  

 
M2. The Magnetic Field. A current in a wire produces a 
magnetic field (Figure Courtesy Wikimedia: Wapcaplet, 
Creative Commons License). Due to the cylindrical 

symmetry, we can assign the unit vector 


. To get a 

sense of this direction, use your right hand with thumb 
aligned with the current. The B field then takes on the 
direction of your curved fingers. 

0

2

i
B

r





= . 

 
You have seen the magnetic field B as a loop line integral 
wrapping around the wire from which you get the above 
result. Let's do this backwards. We then arrive at 
Ampère's Law in integral form. 

0

2

i
B

r




= ,       0(2 )B r i = ,     and     0B dl i = . 

 
We emphasize that both Coulomb’s electrical law and the magnetic law are fundamental force 
laws like gravity. These laws are foundations – starting points. However, one can derive the 
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magnetic force law using Coulomb’s law and Einstein’s theory of special relativity! The 
derivation is long. If you are curious, I describe the derivation in a 10-minute YouTube video. 
 
The above magnetic field loop integral is the integral we can use to calculate B for the current in 
the wire. You did this in your introductory physics class. Since the magnetic field lines wrap 
around on themselves, if we swallow up a magnet like we did for a charge in Gauss's Law, we 
get zero. There are no net piercings of the magnetic field lines outward through the surface. 
What field lines go in also leave the enclosed space. 
 

0B dA =  

 
This equation is the 2nd Maxwell equation. Part of the 3rd Maxwell equation is Ampère's Law  
 

0B dl i = . 

 
You also learned in introductory physics how a charged particle with charge q responds to the 
electric and magnetic field. The general force law which includes both electric and magnetic 
fields is called the Lorentz force law, named after Lorentz of Lorentz transformation fame. 
 

F qE qv B= +   

 
The three key scientists involved so far in discoveries leading to the Maxwell equations are 
shown below. Coulomb is decked out in his uniform. 

Charles Augustin de 
Coulomb (1736-1806) 

Johann Carl Friedrich 
Gauss (1777-1855) 

André Marie Ampère 
(1775-1836) 

   

Courtesy School of Mathematics and Statistics, University of St. Andrews, Scotland 

https://youtu.be/0H3_yOYYZdc


Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 

 

M3. Faraday’s Law.  

Michael Faraday (1791-1867) 
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland  

 
Here is Faraday's law, which you encountered in intro 
physics. 

Bd
E dl

dt


 = − , 

where B  is the magnetic flux. Magnetic flux is found 

by multiplying the magnetic field with the area through 
which the field lines penetrate. 

B BA =  

 
If the magnetic field is not constant, you have to do an integral. Let's see if we can understand a 
theoretical argument as to why Faraday’s law is true. We start from what we know. The "x" 
marks below are the tails of the constant magnetic field B lines that goes into the page. We pull 
a wire loop through this field. 

 

Apply F qv B=   to each of the four red positive charges in the wire. These is no force on 

the east charge since B = 0 there. The other charges are pulled upward but only the west 

charge starts to move to produce a current due to F qvB= . An electric field is generated 
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since we have induced current. The electric field generated must be E vB=  from the electric-

force part of the Lorentz force law: eF qE= . Therefore qvB qE= . 

 
The velocity seen in our formula 
 

E vB=  

 

is given by 

dl
v

dt
= − , which is the 

negative of the decrease in our length 
portion where there is the magnetic field. 
These relationships lead to 
 
 

dl
E vB B

dt
= = − . 

 
Now consider the loop integral for this generated E field. The only relevant side is the west side. 
 

E dl Ew = . 

 
On the west side the electric field lines up with the differential vector length element. We 
integrate along the path where the electric field is pointing. So we integrate up and therefore get 
the positive Ew. We should integrate counterclockwise since when we point out right thumb in 
the direction of the B field, our fingers curve counterclockwise. 
 
The integral for the top part is zero since the E field is perpendicular to the direction which at the 
top is to the right. There is no E field on the east side. The integral at the bottom is zero similar 
to the top analysis. 
 
Putting it all together, we obtain 
 

dl
E dl Ew Bw

dt
 = = − . 

 
To allow for pulling the wire upwards, we move w into the derivative. The w is constant here but 
would not be if we pulled upwards instead of the right. 
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( )d lw
E dl B

dt
 = − . 

 
Note that the product lw is the length times width for where the magnetic field penetrates 
through the wire. So we call this the area A = lw and write 
 

( )d lw dA
E dl B B

dt dt
 = − = − . 

 
Since the B is constant we can pull the B into the derivative. But this is significant because if we 
increased the B field instead of moving the wire, we would get the same effect. 
 

( )d BA
E dl

dt
 = − . 

Since B BA = , the magnetic flux, we have arrived at Faraday's Law from a theoretical 

analysis. 

Bd
E dl

dt


 = −  

 
Now we have four equations, but we have to add one important piece. We do that in the next 
section. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

0

Q
E dA


 =  

 

0B dA =  

 

0B dl i =  

 

Bd
E dl

dt


 = −  

 
 
 

( )F q E v B= + 
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M4. Maxwell’s Equations.  

James Clerk Maxwell (1831-1879) 
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland  

Maxwell focused on the fact that a changing magnetic flux 
produces an electric field. For cases when the magnetic 
field strength increases or decreases through a given area 
one can say that a changing magnetic field produces an 
electric field. 
 
Could the reverse be true? Could a changing electric field 
produce a magnetic field? Could a changing electric flux 
mean we get a magnetic field? 
 
He found that to be the case, which made possible 
electromagnetic waves, which we study later. 
 
 

Before we analyze Maxwell's hunch, we will need a calculation you did in your intro physics 
course with Gauss's Law. To be complete, we will repeat it here. The problem is to find the 

electric field due to an infinite sheet of charge with density   per unit area. We make a little 

rectangle box to enclose a piece of the plane inside. 

 
 

Courtesy Prof. Frank L. H. Wolfs, Department of Physics 
and Astronomy, University of Rochester, NY 

 

We apply Gauss's Law 
0

Q
E dA


 = , where Q is the charge inside. The electric field is 

upward on the above surface and downward on the below surface. The result is 
 

0

A
EA EA




+ =

, which gives 
02

E



=

. 
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Earlier we worked out the magnetic field a distance  
from a wire with current i using Ampère's law 

0B dl i =  and found  
0

2

i
B

r




= . 

 
What happens if we interrupt the current by placing 
two plates each with area A in the path? There is 
no current across the gap. Do we get a B outside 

the plate region? The two parallel plates make up a capacitor, a circuit element that can store 
charge. Those plates are getting charged up and the plates stop the current from going across 
the gap in the middle. 
 
The electric field inside is the sum of two sheets of charge. We neglect the edge effects. Since 

each sheet produces 
02

E



=

 and the opposite charges on each side work together to 

produce an even stronger electric field, the total strength due to both sheets is 
0

E



=

, i.e., 

double. The charge density on each plate is 

Q

A
 = , where Q  is the absolute magnitude of 

the total charge on each plate and the area of each plate is A . In the spirit of Maxwell's insight, 
we calculate the change in electric flux between the plates. 
 

0 0 0

( )Ed d EA d d Q i
A

dt dt dt dt



  

   
= = = =   

   
. 

 
We make the bold statement that the magnetic field B should be the same outside the plates 

too. Then we need 0B dl i =  here too. But there is no actual I in the plate region. 

Instead we have an effective current inside the plate via 
0

Ed i

dt 


=

, i.e., 0
Ed

i
dt




= . So 

we need add this effective current to the regular current in Ampère's Law: 
 

0 0 0
Ed

B dl i
dt

  


 = +  

 
And this last piece of the puzzle will allow for the existence of light! 
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Free Space Equations 
 

0E dA =  

 

0B dA =  

 

0 0
Ed

B dl
dt

 


 =  

 

Bd
E dl

dt


 = −  

The Maxwell Equations and the Lorentz Force Law 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M5. Electromagnetic Waves. We are interested in the vacuum, away from source charges and 
currents. The charges and currents are then far away. But there are electric and magnetic fields 
in the space we are in, caused by those far away sources. So we set the charges and currents 
to zero where we are and have the free space Maxwell equations. 
 

 For the free space 
Maxwell equations 
we are far away 
from any charge 
sources and 
currents. Thus, we 
have set 

0Q =  and 0i = . 

 

The free-space equations have beautiful symmetry and contain the secret about light. We play 
with these equations to see if a wave equation is supported. This seeking is an example of 
theoretical physics at its best. We are in search of a discovery starting with the Maxwell 
equations and using theory only from this point onward. 

0

Q
E dA


 =  

 

0B dA =  

 

0 0 0
Ed

B dl i
dt

  


 = +  

 

Bd
E dl

dt


 = −  

 
 
 

( )F q E v B= + 
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The Secret to 
Understanding Light 

 

0 0
Ed

B dl
dt

 


 =  

 

Bd
E dl

dt


 = −  

What might inspire us? Studying the meaning of equations by 
staring at them is very valuable. The first equation tells us 
that a changing electric flux produces a magnetic field. The 
second indicates that a changing magnetic flux produces an 
electric field. Could a changing electric field then create a 
changing magnetic field that in turn creates a further electric 
field and so on? Perhaps we get a sort of chain reaction and 
the fields propagate themselves. And we are in vacuum! That 
would mean electromagnetic waves need no medium to 
travel in or on! There would then be no ether, once thought 
to support waves in an otherwise vacuum. 
 

We first set up a coordinate system. I prefer to turn 
the usual coordinate system (left one) to the 
orientation seen in the right coordinate system. 
 
Note that I have respected the original. This 
respect is important since both systems remain as 
right-handed coordinate systems, i.e., 
 

i j k = . 

 
To start things off, we take an electric field along the x axis and a B field along the y axis. 
For the loop integral in Faraday’s law we integrate counterclockwise since when we point our 
right thumb along the B field, our fingers curve counterclockwise. 
 
 

Bd
E dl

dt


 = −  

 

 
 
 
 

E
E dl z x

z


 =  

  

 

( )Bd d B
B z x z x

dt dt t

 
− = −   = −  


 

 

( )E dl E E x E x E x = +   −  =  
E

E z
z


 = 


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yx
BE

z t


= −

 
 

 
 

Next we consider 0 0
Ed

B dl
dt

 


 = . 

 
We again integrate counterclockwise, since the electric field points upward. 

 

( )B dl B y B B y B y =  − +  = −   

 

B
B dl z y

z


 = −  

  

 

0 0 0 0 ( )Ed d
E z y

dt dt
   


=    

 

0 0 0 0
Ed E

z y
dt t

   
 

=  


 

 

0 0
Ed

B dl
dt

 


 =  

 

 0 0

y x
B E

z t
 

 
− =
 

 

 
 

The two derived equations are 
yx

BE

z t


= −

 
 and 0 0

y x
B E

z t
 

 
− =
 

. 

 
Take another derivative since we are shooting for the wave equation. 

2

0 02

y yx x
B BE E

z z t t z t t
 

      
= − = − =         
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2 2

0 02 2

x xE E

z t
 

 
=

 
 

 
 WAVE EQUATION! E Traveling down z-axis. 

Take another derivative on the second equation. 
 

2

0 0 0 0 02

y yx x
B BE E

z z t t z t t
     

      
− = = = −           

 

 
2 2

0 02 2

y yB B

z t
 

 
=

 
 

 
WAVE EQUATION! B also traveling down z-axis. 

 
LIGHT IS A TRANSVERSE WAVE, in both the E and B Fields. 

 
They are perpendicular to the direction of propagation (thus transverse wave). 

 
Light also needs no medium to travel in. It propagates itself via the Maxwell equations. 

 
The E vector is vertically aligned. We say the light has linear polarization, in this case vertical. 

. 
 
 
 
 
 
 
 
 
 

2 2

0 02 2

x xE E

z t
 

 
=

 
     

2 2

0 02 2

y yB B

z t
 

 
=

 
 

 
Compare with 

 

2 2

2 2 2

( , ) 1 ( , )x t x t

x v t

  
=

 
, 
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The wave speed is 
 

0 0

1
v

 
=

 

 
Time to plug in some values. We will use current day values. 

Electric constant: 

2
12

0 2

C
8.8541878128 10  

N m
 −= 


 

 

Magnetic constant: 
6

0 1.25663706212 10  
T m

A
 − 

=   

6 12

1

(1.25663706212 10 )(8.8541878128 10 )

m
v

s− −
=

 
 

m
299,792,458

s
v =  

The speed of light by checking the references is 

m
299,792,458

s
c =  

Not likely a coincidence finding agreement to 9 significant figures! 
 

Conclusion: Light is an electromagnetic wave. 

 
 

Representation of Light Wave. Wikipedia: SuperManu. Creative Commons License 
 

m km
299,792,458 299,792.458

s s
c = =  

 
Let’s do some rounding off using kilometers per second for the speed of light. 

 

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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km
299,792

s
c =  (6 significant figures) 

km
299,790

s
c =  (5 significant figures) 

km
299,800

s
c =  (4 significant figures) 

km
300,000

s
c =  (? significant figures) 

 
The above value is really to 3 significant figures. To communicate this fact, we can write 

 

6 km
3.00 10

s
c =  . 

 
In 1983, an international agreement was made to tweak the definition of the meter so that the 

 speed of light is EXACTLY 

m
299,792,458

s
c = . 

 
The meter is defined as the distance light travels in vacuum in 1/299,792,458 second. 
We have come long ways since the days of that one-meter reference bar in France. 

 
 

“The metre was originally defined in 1791 as being 1/10,000,000 
of the distance from the North Pole to the Equator through Paris, 
making the kilometer 1/10,000 of this distance.” Wikimedia 
 
Public Domain image from Wikimedia: adapted by Martinvl 
 
Original was prepared by a US Government employee during 

employment and is thus Public Domain.
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
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"Let There Be Light." 
 

T-Shirts using the differential form for the Maxwell equations in various versions. 
 

Brother (Engineering Major) Sister (Astrophysics Major) Baby (Undecided) 

  
 

www.zazzle.com for Custom T-Shirts www.cafepress.com 

I prefer the MKS units on the left shirt, which agrees with the right box below. 
 

The Maxwell Equations in Integral Form (left) and Differential Form (right). 
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 = −  

http://www.zazzle.com/
https://www.cafepress.com/
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M6. Measuring the Speed of Light. 
 

Albert Michelson was born in Poland. He came to the 
United States and attended the US Naval Academy in 
Maryland. He stayed on as a teacher. In 1878, with $10 
worth of equipment, he set up an experiment to measure 
the speed of light using a rotating 8-sided mirror and a 
regular plane mirror on a mountain 22 miles away (along 
the seawall). 

In the photo, Michelson is at the blackboard with a sketch 
of his 8-sided mirror. This experimental result was the first 
accurate measurement of the speed of light. Albert 

Michelson became the first American to win the Nobel Prize in Physics (1907). Your instructor 
had the good fortune to meet one of Michelson's daughters years ago. 
 
"I had the pleasure of meeting one of Michelson's daughters, Dorothy Michelson Livingston, 
shortly after I started teaching at UNCA. Livingston came to UNC-Greensboro, North Carolina 
in 1979 to talk about her father and a book she had written about him. The occasion was a 
regional meeting of the American Association of Physics Teachers. She told captivating 
personal stories, mentioning Einstein's visits to her home to see her father when she was a little 
girl. After her talk, there followed a presented-paper session in which I gave a talk on 
the Light course I was developing at UNCA. My presentation included a slide show of images I 
had collected using all major parts of the electromagnetic spectrum. I was glad to see that 
Michelson's daughter was in the audience for my presentation. During my introductory remarks I 
mentioned that all electromagnetic waves travel at the speed of light, accurately measured by 
Michelson. I moved my arm to acknowledge Livingston when I mentioned her father. During the 
break that followed, Livingston quickly came down to the front of the room excited about my 
presentation and smiling. She said she would take my course if it were offered where she lived 
in New York." Prof. Ruiz, January 2001 Recalling a 1979 Experience. She could now online! 
 
Here is a description of Michelson's famous experiment to accurately measure the speed of 
light. The light hits the top right mirror of the octagonal mirror (see figure). The light bounces off 
the mirror and heads to the plane mirror on a mountain 22 miles away. It reflects off the 
mountain and travels 22 miles back. But by this time, Michelson's mirror has rotated 1/8 of a turn 
so that the returning light can hit the lower right mirror and bounce into the telescope at the 
bottom of the figure. If the octagonal mirror is too slow, the light will not reflect in the correct 
direction and thereby miss the telescope. 

Michelson had to rotate his mirror 535 times per second. To make the calculation easy to do 
without a calculator, we are going to round off 535 to 500 Hz. Now if we actually did the 
experiment by spinning the mirror slower at 500 Hz, we would have to use a mountain farther 
away since light has slightly more time to travel in our revised experiment. In our revised 
experiment, the light would have to travel a round trip of 75 km. This is about 47 miles instead of 
Michelson's 44 miles for the round trip of going 22 miles each way. 
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Michelson's Experiment to Measure the Speed of Light 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I use rounded values for my PHYS 101 Light and Visual Phenomena class so we can 
concentrate on the physics with easier numbers to work with. And after all the Maxwell equation 
stuff we did today, you need a break from heavy math and numbers. Here is my basic math 
approach that you can use for the layperson and grade-schoolers. 

• Distance for round trip = 75 km, 
• Time for round trip = (1/8)(1/500) s = 1/4000 s 

We are ready to figure out the speed using our standard relation 

speed = distance / time. 

Since we are going to divide by a fraction, we use the prescription: keep, change, invert. We 
keep the 75, change division to multiplication, and invert the fraction to get 4000: 

speed = 75 x 4000 = 25 x 3 x 4000 = 25 x 4 x 3000 = 300,000 km/s. 

This value of 300,000 kilometers per second is about 186,000 miles per second. If you could 
circle the Earth at this speed, you would whip around the Earth over 7 and a half times in one 
second since the circumference of the Earth is 25,000 miles. 

A student from UNCA wrote the following letter to your physics teacher in the early 1980s after 
he took the light course and spent some time at the U.S. Naval Academy. 

Dr. Ruiz, 

Doubt you remember me but I was in a few of your classes last year before I transferred here. I 
was wandering around the campus when I came across a small plaque that I thought might be 
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an interesting bit of trivia for you. In your "light" course you talked about the speed of light. This 
plaque had something to do with it. 

"Midshipman Albert A. Michelson graduated from the Naval Academy in 1873, but stayed on to 
teach physics and chemistry. using that time he set up on the Old North Seawall an apparatus 
for measuring the speed of light, and was the first man to accomplish this accurately ..." 

Since the time of the experiment much of the Severn River and Annapolis Harbour have been 
filled in to provide more land for the academy. The sight of his experiments now runs across the 
center of the Yard. Tracing the path of his experiment is a small line of brass plates embedded 
in the ground. Also, inside the Physics and Math buildings are a couple cases containing the 
machines and equipment he used in his experiments along with many of his awards and prizes. 

Just thought you'd be interested. 

A former student, 
Kevin J. Fitzpatrick 
"Vicious" 

Of course your physics teacher remembered Kevin. After Kevin wrote this letter, Kevin's brother, 
wife, and father all took Light and Visual Phenomena. 

 
 

A Plaque at the United States Naval Academy (USNA). Courtesy USNA. 
 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 

 

M7. Light Wave. 
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M8. The Electromagnetic Spectrum. 
 

 
EM Spectrum. Wikipedia: Philip Ronan, Gringer. Creative Commons License 

 
 
 

c f=  

 
The Electromagnetic Spectrum 
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Chemistry Prof. Debbie Gale Mitchell Uses Makeup to Teach the Spectrum 

Twitter, Friday, January 26, 2018. 
Used by Permission 
Courtesy Prof. Debbie Mitchell 
Chemistry, University of Denver 
 
"This chemistry prof's makeup is 
inspired by spectroscopy. Debbie 
Gale Mitchell ordered the colours 
of her eyeshadow by wavelength 
to teach her students about 
spectroscopy, which is the study 
of how light interacts with matter." 
Style - Twitter 
 
"Hi, I'm a chemistry prof who loves 
over-the-top makeup. I’m teaching 

spectroscopy today, so 
 seemed appropriate. Colors are 
ordered by wavelength (λ). Longer 
λ was placed in the inner corner 
with λ decreasing towards outer 
corner." Prof. Mitchell 
 
Prof. Debbie Gale Mitchell, 
Department of Chemistry and 
Biochemistry, University of 
Denver, Denver, Colorado (Ph.D. 
from U. of Denver in 2013) 
 

The Professor had 4 basic colors of makeup, which she posted as hearts. 
 
 

    
 
Look at the photo’s left eye. The order from left to right is VBGY from the VBGYOR order. 
Look at the photo’s right eye. The order from left to right is YGBV from the ROYGBIV order. 
 
Sometimes scientists like to use the ROYGBIV order since energy increases from Red to Violet. 
Other times, scientists may use VBGYOR, where the wavelength increases as you go from 
Violet to Red. What is especially nice about Prof. Mitchell’s make-up idea is that there is a mirror 
symmetry in the applied make-up color array. She starts closest to the nose with the lower 
energy (longer wavelength) and proceeds outward for higher energies (shorter wavelength). The 
mirror reflection is an extra optical bonus. 

https://twitter.com/i/moments/956870074857553920?t=1&cn=ZmxleGlibGVfcmVjc18y&refsrc=email&iid=df2493fe74bc4d80a1cd921fa3bf6b9b&uid=217859888&nid=244+285609984
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From Prof. Debbie Gale Mitchell on Twitter: “Spectroscopy notes, just for fun!” 
 

 
 

Used by Permission, Courtesy Professor Debbie Gale Mitchell, Chemistry, University of Denver. 

There is a lot of physics and chemistry on these pages. Remember our theme in the last chapter 
where we said it is important for you to eventually become a tour guide for landscapes of 
physics? Then you can tell the story of what you have learned in your own creative way. 
Chemistry Professor Mitchell sets a great example here laying out a landscape rich in both 
physics and chemistry. Can you find where she includes electromagnetic waves? She indicates 
that the electrical and magnetic fields are 90° apart as we found in this chapter. 
 

The separate pages appear below. 

https://twitter.com/heydebigale/status/1017794610540654592?s=21
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