## Modern Optics, Prof. Ruiz, UNCA Chapter L. Waves, Phasors and Packets – Homework

HW L1. A Trig Identity. Use Euler exponentials to show that  $4\cos^3\theta = \cos(3\theta) + 3\cos\theta$ .



## HW L2. The Cauchy Formula for Dispersion.

**Augustin-Louis Cauchy (1789-1857).** French mathematician, physicist, and engineer. Among Cauchy's many achievements is his contributions in complex variables. In this problem we investigate his empirical formula for the index of refraction in a dispersive medium. One of his formulas is

$$n(\lambda) = A + \frac{B}{\lambda^2}$$
, where A and B are constants for the medium. A

popular crown glass is made by Schott, a glass company in Mainz, Germany. The company can be traced back to a company founded in 1884 by Otto Schott, Ernst Abbe of the Abbe number, Carl Zeiss and son Roderich Zeiss. The popular universal glass borosilicate glass BK7 is used in a variety of high-quality applications.

| Index of Refraction for Borosilicate Glass Schott BK7 at Three Wavelengths |          |                 |          |
|----------------------------------------------------------------------------|----------|-----------------|----------|
| Fraunhofer Line                                                            | ш        | D               | C        |
| Element                                                                    | Hydrogen | Sodium          | Hydrogen |
| Description                                                                | H-beta   | Doublet Average | H-alpha  |
| Color                                                                      | Blue     | Yellow          | Red      |
| Wavelength                                                                 | 486.1 nm | 589.3 nm        | 656.3 nm |
| Refractive Index n                                                         | 1.522    | 1.517           | 1.514    |
| Cauchy Result for n                                                        | ?        | ?               | ?        |

Complete the above table to four significant figures using the Cauchy approximation where the Cauchy constants for BK7 glass are A = 1.5046 and B = 0.00420 when the wavelengths entered into the formula are in microns ( $\mu$ m). Include the numerical steps for each of your calculations.

HW L3. Group Velocity. Derive the following group velocity formula in a dispersive medium

$$v_{g} = \frac{c}{n} \left[ 1 + \frac{\lambda}{n} \frac{dn}{d\lambda} \right]$$
 starting from  $v_{g} = \frac{d\omega}{dk}$ 

## HW L4. Phase Velocity and Group Velocity.

a) What is the phase velocity in outer space for light emitted from the 3-2 Balmer transition, i.e., 656.3 nm, to three significant figures in km/s? This beautiful deep-red light of emission nebulae is also designated as H-alpha, H $\alpha$ , or H- $\alpha$ .

b) Use your group velocity formula of HW L3 and the Cauchy dispersion formula of HW L2 in order to calculate the group velocity in km/s for H $\alpha$  in Borosilicate Glass Schott BK7 to three significant figures?

Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License