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Modern Optics, Prof. Ruiz, UNCA                                doctorphys.com 
Chapter L. Waves, Phasors and Packets 
 
L0. Introduction. You have experienced the power of physics in many interdisciplinary 
applications. Let’s review this wealth of  connections. The critical thinking skills you are 
enhancing and further developing in this course will serve you well in any future studies and 
employment. Ten disciplines are listed below. 
 

• ATMS, Atmospheric Science (Meteorology) – mirages and rainbows 

• ASTR, Astronomy – telescopes, solar spectrum, eclipses 

• BIOL, Biology – the optics of the human eye (cornea and eye lens) 

• CHEM, Chemistry – light & electron transitions (Hydrogen, Sodium, Mercury, Cadmium) 

• MAG, Magic – illusions based on optics 

• MATH, Mathematics – algebra, geometry, trigonometry, and calculus 

• ENGR, Engineering – design of mirrors (wide-angle, vanity) and lenses 

• MED, Medicine – visual acuity, prescribing eyeglasses for myopia and hyperopia 

• PHOT, Photography – f/#, aperture, camera lenses 

• PHYS, Physics – Laws of Reflection, Refraction, Spherical Mirrors, and Lenses 
 
This chapter will focus on connections within physics itself. Think of the chapter as taking a tour 
through a landscape of physics related to waves, similar to taking a hike, observing on a trail. 
 

 
 

 

  
  

Photos by Doc, March 2, 2009, Trail Near Home, Beaverdam 

http://doctorphys.com/
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Most of this chapter will be your going on a tour will me and I will be your tour guide. The 
landscape with be theoretical physics. To set a good example, my tour will be off the top of my 
head to show you a unique way of integrating the basics of wave physics. I relied on my 
teachers years ago and those that inspired me the most were original in their teaching. I could 
tell that these teachers had incorporated the physics into themselves and were giving me their 
unique and original explanations – as the tour guide. Later, hopefully, you can give you own 
tours of physics landscapes, as you will begin to see features that others do not see. 
 

Richard Feynman (1918-1988) 
Theoretical Physicist 
Courtesy nobelprize.org 
 
Richard Feynman was an excellent example of a theoretical physicist. He 
worked everything out for himself, often discovering new and more powerful 
ways of doing the math and physics. 

 
Feynman once stressed the importance of knowing more than one way 
to understand a physics issue. He was giving a talk in 1964 and was 
referring to good theorists and representations of a specific physics 
problem. I would like to recommend that physics students try to 
understand some physics of their choice with 4 or 5 different 

representations. Feynman was so clever that he was considered a wizard or magician at 
theoretical physics. 
 

David Copperfield (b. 1956) 
Magician and Illusionist 
Courtesy Homer Liwag, Released into the Public Domain 

 
I quote the magician David Copperfield, where a similar comment was 
made regarding magic secrets. 

"I don’t think people want to know. I don’t think people really care about 
knowing. They enjoy the fantasy, you know. In my career there’s been 
so many people making guesses, and that’s part of the fun, I guess, for a 
certain percentage of the audience, trying to guess how things work. I 

have four or five methods for each of the illusions, and I keep changing the methods. 

"It’s not unlike what Houdini does. He had many ways of escaping from a jail cell, not just one 
way. He had many different ways. So if people were kind of onto him, or if he wrote a book 
about how he did it, there was many other ways of doing it. And the net result is, it’s not about 
the secret. It’s not about how it’s done. It’s the feeling of being able to do it. It’s the wonder that’s 
created by the act itself." David Copperfield (www.pbs.org) 

David Copperfield even looks a little like Feynman. Both are artists of the highest caliber in their 
own right. Feynman shared the 1965 Nobel Prize in Physics and Copperfield according to 
Forbes “is the most commercially successful magician in history.” Forbes, Houdini in the Desert, 
2006  

http://www.shoppbs.pbs.org/wgbh/amex/houdini/filmmore/reference/interview/davidcopperfield04.html
https://www.forbes.com/forbes/2006/0508/153.html#491467eb4596
https://www.forbes.com/forbes/2006/0508/153.html#491467eb4596
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L1. The Circle and the Sine Wave. The connection between motion along the circumference of 
a circle and the sine wave “can be traced back to Newton,” (quoted from my paper listed here). 
 
Ethan Chester (Asheville High School Student) and Michael J. Ruiz, "HTML5 lab app relating 
circular motion to harmonic motion and the wave equation," Physics Education 55, 013004 
(January 2020). Click for the App 
 
 

 
The application circleSine developed by Ethan Chester and me. 

 
Coauthor Ethan was a high-school student at the time. He had contacted then Chair Professor 
Bennett and asked to do an intern at UNCA just for the experience. I took him on when I found 
out he could program. I wanted him to get something more than just experience, therefore I 
configured a computer project for him that was publishable. So we can add another 
interdisciplinary area here: 
 

• CSCI, Computer Science – creating a computer visualization for the sine wave. 
 

We were not the first to accomplish such a visualization. But remember, my Art major student 
Halima Flynt was not the first to make a camera obscura. However, if you add a unique 
innovative slant to a topic, it may be publishable. You can drag the ruler in our app, measure 
wavelengths, and adjust amplitude, frequency and wavelength. The app can be used in an 
online lab, like we do for my PHYS 102 The Physics of Sound and Music. We made it free for 
non-commercial use. 
 
One advantage of computer science is that you can program a device that can be impossible to 
actually make and distribute as real equipment. The visualization provided here can give insight 
into waves. Such motion that results in sine waves is called harmonic motion. From the app 
you can see that shorter wavelength means higher frequency, the amplitude does not affect the 
frequency or wavelength, and the speed of the waves to the right is independent of the 

http://www.mjtruiz.com/ped/circleSine/
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amplitude, wavelength, and frequency. Frequency and wavelength are related to the wave 
speed as 

v f= . 

 
The speed depends on the property of the medium. For a nondispersive medium, all 
wavelengths travel at the same speed. Here is my ideal surfing figure that I use in my liberal arts 
intro courses. If the wavelength is 10 m and 5 crests go by per second, what is the speed? They 
say 50 m/s. I write down 10 m times 5 1/s and then replace the friendly numbers with the 
appropriate symbols. 

 
 
L2. The Ubiquitous Sine Wave. 
 
When I was in high school, I though the sine wave was complicated. After all, isn’t y = mx + b 
the easiest function ever? But it turns out that the sine wave is nature’s wave – and simple too. 
 

Looks Friendly Looks Scary 

  

Courtesy Jim.belk 
Released to the Public Domain 

Courtesy 
www.desmos.com 

 
 

https://www.desmos.com/calculator
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Making Sine Waves in Class. 
PHYS 102 The Physics of 
Sound and Music, 
August 20, 2015. 
Still from Video by Lara Fetto. 
 
Here we have the “human 
oscilloscope.” A student waves 
up and down naturally, looking 
away from the blackboard so 
as not to intentionally draw 
anything. Two students push 
the cart to sweep out the trace 
like an oscilloscope. 

 
Doc and daughter Christa. 
Filming a demonstration in 2001. 
Still from Video by Evan Ruiz. 
 
Note the sine wave on the board, When 
Christa waves at a higher frequency (the top 
wave), the wavelength is shorter. 
 
Therefore the demonstration also provides for 
a visualization of the wave formula 
 

v f= . 

 
 

The sine wave is nature’s wave. People wave sine waves. The small oscillations of a pendulum 
and a mass attached to a spring with no resistance produce sinusoidal motion. Atoms vibrate in 
a sine fashion. Whenever a charged particle vibrates it shakes off a light wave. Why is the sine 
wave everywhere? To answer this question we turn to potential energy. 
 
In introductory physics the potential energy for gravity near the Earth’s surface is 
 

( )V z mgz= . 

 
The force is given by negative the derivative: 

 

( )dV z
F mg

dz
= − = − . 

For the spring 
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21
( )

2
V z kx= , 

 

( )V x
F kx

dx
= − = − , 

 
which is Hooke’s Law. 
 
Now consider some complicated potential that has a stable equilibrium point, i.e., a minimum. 
How about the Morse potential that describes a diatomic molecule? Here is another chemistry 
connection in our course 
 

 
Wikimedia: Mark Somoza 
Creative Commons License 
 
We will move the coordinate 
axes so that (x,E) = (0,0) at 
the minimum. Note E = V. 
 
Then we can apply the Taylor 
series expansion of a power 
series for V(x). 
 
Remember back in your days 
of calculus, the following 
general formula? 
 

( )

0

(0)
( )

!

n
n

n

f
f x x

n



=

=   

 
See the review below. 
 
 
 

( )
2 (3) 3

0

1 1 (0)
( ) (0) '(0) ''(0) (0) ...

2! 3! !

n
n

n

f
f x f f x f x f x x

n



=

= + + + + =   

( )

0

(0) ( )
n

n

n

x

d
f f x

dx
=

 
  

 
 

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Applying the power series to the potential function, which I emphasize, can have any shape as 
long as it has that minimum so we have a stable situation somewhere. 

 

(1) (2) 2 (3) 31 1
( ) (0) (0) (0) (0) ...

2! 3!
V x V V x V x V x= + + + +  

 

Small x => 
(1) (2) 21

( ) (0) (0) (0)
2!

V x V V x V x + +  

 

At a minimum => 
(2) 21

( ) (0) (0)
2!

V x V f x +  since the slope is zero there. 

 

We may always choose (0) 0V = , the reference. 

 

(2) 21
( ) (0)

2!
V x V x  

 

Hooke’s Law: 
(2)( )

(0)
V x

F V x kx
dx

= − = − = −  

 
(2) (0)k V=  

 
What? All potentials that have stable extrema,  i.e., minima, approximate Hooke’s Law for small 
oscillations there. We should solve the Hooke’s Law problem. Guess what the solution will be? 
Our sine wave friend. Watch! 

( )V x
F kx

dx
= − = −  

 

F ma mx= =  

 
 

mx kx= −  

 

k
x x

m
= −  

 
Which function do you know when you take two derivatives you get it back with a minus sign? 
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( ) sin( )x t t=  

 

( ) cos( )x t t =  

 
2( ) sin( )x t t = −  

 

2 k

m
 =  

 

k

m
 =  

 
We expect a second general solution since we have a second order differential equation. 

 

( ) cos( )x t t=  

 

( ) sin( )x t A t = −  

 
2( ) cos( )x t A t = −  

 

( ) cos( ) sin( )x t A t B t = +  

 
Initial conditions => A, B. 

 
Pull back and let go => B = 0 

 
Whack it => A = 0 

 
 
Below is how I solve the differential equation for non-science majors and grade-schoolers. I 
follow the mass on the spring with my left hand and let my right hand go up and down in sync as 
I back up to the right. The result is the sine wave solution on the blackboard. 
 
I directly write the solution on the board following the motion. Such motion is called simple 
harmonic motion. And all stable minima will exhibit sine wave oscillations for small 
displacements from equilibrium! 
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Follow oscillating mass with left hand Right hand mimics left to draw sine wave. 

 
Now you can see why the sine wave is nature’s wave! And shows up everywhere! 

 
L3. Adapting the Sine Function for Waves.  
 
The sine function is shown below in its purely mathematical form. We need to prepare the sine 
wave for use in physics, where we have concepts such as wavelength and frequency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wikipedia: Geek3. Public Domain. 
 
See below for what happens when we compare with sin(2x) and sin(3x). 
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sin(x) from www.mathway.com/Graph 

 
 

sin(2x) from www.mathway.com/Graph 

 
 

sin(3x) from www.mathway.com/Graph 

 

https://www.mathway.com/Graph
https://www.mathway.com/Graph
https://www.mathway.com/Graph
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For sin(nx) there are n wavelength that fit between 0 and 2. However, we need sin(kx) as our 
basic expression since in physics we want x to be meters, feet, i.e., something with the 
dimensions of length. So the “k” is needed to convert to a dimensionless quantity that the sine 
function can then work on. In summary, kx will be dimensionless, like radians. 
 
So far we have sin(kx). We can easily add amplitude: A sin(kx). Now we need to add motion to 
the wave so that it can travel. We start by looking into what shifts a function to the right. 

A function ( )f x  is shown with a peak at f(0). Denote this by writing (0)f peak= . If we shift 

this function to the right by a distance d , then the new function ( )h x  must be 

( ) ( )h x f x d= − . Here is how you can check this rule. Is the peak now at x d= ? Does 

( )h d peak= ? We work out the details below the figure. 

 

(0)f peak=    and   ( ) ( )h x f x d −  

 

( ) ( ) (0)h d f d d f peak= − = =  

 
It checks out. Do you remember 
doing this often in trigonometry? If 

you shift the cosine by / 2  to the 

right, you get the sine. 
 

sin cos( )
2

x x


= −  

 
The above relation also tells you 
that the sine of an angle in a right 
triangle equals the cosine of its 
complement. 
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Since ( )f x d−  is our shifted function to the right by a distance d , we can let d vt=  to 

obtain a traveling function to the right. Common practice is to use   for a wave. So we write 

( , ) ( )x t f x vt = − . 

 
For a wave traveling to the left, switch the sign in front of v. 

 

( , ) ( )x t g x vt = + . 

 

Applying these concepts to ( ) sin( )f x kx= , we obtain 

 

 ( , ) sin ( )x t k x vt = − . 

 
Pick t = 0 to freeze the wave at a given instant in time so we can analyze sin(kx) from the point 
of view of physics. Then, with the inclusion of the important physical quantity – the amplitude A, 
 

( ) sin( )x A kx = . 

 

 
 

Wavelength  and amplitude A are important physical quantities in physics. We are dressing up 

the math to describe the physics of waves. 
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One wavelength is realized when the argument kx is set to k with  

 

2k = . 

 
The parameter k is the wave number. Remember our graphs for sin(nx)? The “n” told us the 

number of wave cycles that fit into 2. Therefore k is literally the wave number. 
 

2
k




=  

 

In summary, k is indeed the wave number, i.e., how many wavelengths go into 2. What can we 
say about kv in sin[k(x – vt)]? 

 

 ( , ) sin ( ) sin( )right x t A k x vt A kx kvt = − = −  

 

 ( , ) sin ( ) sin( )left x t A k x vt A kx kvt = + = +  

 
Pick x = 0 so that we are at the origin. Then 
 

( ) sin( )t kvt =   

 
Includes waves moving left (plus sign) or right (minus sign). One cycle in time is called the 
period T. A single period is realized when 

 

2kvT = . 

Substituting 

2
k




= , 

2kvT =      =>     

2
2vT





=      =>     

1
1vT


=  

 

vT =      =>     v
T


= , 

 
which makes sense since the speed is the time to go one wavelength. 
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But we just derived our velocity formula from before since frequency 

1
f

T
= . 

Here is our velocity formula or wave relation. 
 

v
T


=      =>     v f=  

 
We also have the natural appearance of another important formula from our 

 

2kvT = . 

This formula is equivalent to 

2
2kv f

T


= = , 

 
suggesting we define an angular frequency 

 

2 f = . 

 
Finally, we can express our rich wave physics with the following. 
 

( , ) sin( )right x t A kx t = −           ( , ) sin( )left x t A kx t = +  

2
k




=           2 f =           kv =           v f=  

I know that you have been introduced to these in a previous course. But remember that I am 
taking you on a tour through the trail of theoretical physics as it applies to basic optics. 
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L4. Euler’s Formula. Sines and cosines are harder to work with when compared to 
exponentials. And now we come to a remarkable relation in mathematics. 

 
 Leonhard Euler (1707 – 1783) 
 
Let’s review your Taylor series 
 

( )

0

(0)
( )

!

n
n

n

f
f x x

n



=

=   

for sin x  and cos x . If you do not remember 

calculating these, I strongly recommend you doing it 
now. Taking derivatives of cosines and sines are easy. 
You should be able to derive these results in a very 
short amount of time. 
 
It will be a good review for you. And you will be acting 
like a theoretical physicist, where you are powerful and 
derive all your fundamental physics and mathematics. 
 

For   in radians, which is really a dimensionless quantity. 

 
2 4

cos 1 ...
2! 4!

 
 = − + −  

 
3 5

sin ...
3! 5!

 
 = − + −  

Now stick 1i  −  in front of the sine. By the way, i  is sacred to electrical engineers as 

standing for current. So they pick 1j  − . 

3 5

sin ...
3! 5!

i i
i i

 
 = − + −  

Since 
2 1i = − , 

3i i= − , 
4 1i = , and 

5i i= , we can write 

 
3 5( ) ( )

sin ...
3! 5!

i i
i i

 
 = + + +  

Note that 
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2 4 2 4( ) ( )
cos 1 ... 1 ...

2! 4! 2! 4!

i i   
 = − + − = + + +  

 
Add these together. 

2 4 3 5( ) ( ) ( ) ( )
cos sin 1 ... ...

2! 4! 3! 5!

i i i i
i i

   
  + = + + + + + + +  

 
2 3 4 5( ) ( ) ( ) ( )

cos sin 1 ...
2! 3! 4! 5!

i i i i
i i

   
  + = + + + + + +  

 
But wait. Isn’t the following the power series for the exponential? 

 
2 3 4 5

1 ...
2! 3! 4! 5!

x x x x x
e x= + + + + + +  

 

Then with x i= , 

 
2 3 4 5( ) ( ) ( ) ( )

1 ...
2! 3! 4! 5!

i i i i i
e i    

= + + + + + +  

 

cos sinie i  = +  

 
This relation is called Euler’s formula and Feynman has referred to it as “Our Jewel.” 

 
Emerald-Cut Sapphire and Pear-Shaped 

Diamond Halo Ring, $50,000 
Blue Nile: www.bluenile.com 

https://www.bluenile.com/
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Now we come to a remarkable identity called Euler’s identity. 

Consider  = . Then 

 

cos sinie i  = +  becomes cos sinie i  = +  and 

1 0ie  = − + , which we can write as follows, the Euler identity. 

 

1 0ie  + =  

 
I will call this relation “Our Opal.” 

 
A 20.05 carat Ethiopian Welo (Wello) opal set in 14k gold and 
surrounded by diamonds. Wikimedia: Doxymo. Creative Commons 

 
Five most important numbers in mathematics appear here once and only once. 

 
Euler Identity on Rhoades-Robinson Hall Gingerbread House, 
taking First Prize in the December 2004 Gingerbread Contest. 

UNCA Gingerbread Photo by Doc (December Holiday Season 2004) 
 

To illustrate the power of Euler’s relation, we proceed to derive some trig identities with ease in 
the next section. We are in theoretical physics mode now. Derive everything! A fellow grad 
student from Caltech told me, when we were both at Maryland working on Ph.D. degrees, that 
Feynman was at the board one day driving integral identities for students, even taking requests! 

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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L5. Euler’s Formula and Trig Identities.  
 

( )i i ie e e   + =  

 

cos( ) sin( ) (cos sin )(cos sin )i i i       + + + = + +  

 

cos cos cos sin sin cos sin sini i       = + + −  

 

(cos cos sin sin ) (cos sin sin cos )i       = − + +  

 

cos( ) cos cos sin sin     + = −  

 

sin( ) cos sin sin cos     + = +  

 

sin( ) cos sin sin cos     − = − +  

 

sin( ) sin( ) 2sin cos     + + − =  

 

Let A  = +  and B  = − . 

 

Then 
2

A B


+
=  and 

2

A B


−
=  

 

sin( ) sin( ) 2sin cos
2 2

A B A B
A B

+ −   
+ =    

   
 

 

 Use cos( ) cos cos sin sin     + = −  with   = = . 

 
2 2cos(2 ) cos sin  = −      =>     

2 2cos(2 ) cos (1 cos )  = − −  

 
2cos(2 ) 2cos 1 = −  

 

21 cos(2 )
cos

2




+
=      and     

21 cos
cos

2 2

 +
=  
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L6. The Complex Plane and Phasors. Two labelings for the complex plane appear below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We are going to need some mathematical relationships. The length of the above phasors are 
given by the Pythagorean theorem. 
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For the complex number z x iy= + , the length of the “vector” in the complex plane is 

 

2 2z x y= + , 

 
which is also called the modulus. The modulus can be thought of as the absolute value of a 

complex number. The complex conjugate of a complex number z x iy= +  is defined as 

 

*z x iy= − . 

 

You just stick a minus sign whoever there is an i . When we represent a complex number using 

the Euler formula, many often refer to the number as a phasor. Electrical engineers find many, 
many applications of phasors in circuits with alternative current. 

 

The Phasor cos sinie i  = +  on the Unit Circle 

 

 
 

 
To illustrate the phasor we consider two light waves interfering similar to what we encountered 
in an earlier chapter. We apply our wave concepts to the double-slit arrangement shown below. 
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A light wave, which we will later see is an electromagnetic wave, leaves slits (small openings) 1 
and 2. We can write the waves reaching the screen as electric field waves 
 

1 sin( )oE E t=      and     2 sin( )oE E t = + , 

 

where the phase   is due to the extra path length  . 

 
The extra optical path length is 

sind = . 

 

A phase of 2 occurs for every wavelength   of optical path length difference. Therefore, 

 

2


 


= . 

By the way, since 

2
k




= , we have this insightful formula k = . This relation makes 

sense since kx  appears in ( , ) sin( )x t A kx t = −  and a delta x translates to a shift in 

phase: ( )k x k =  = . For a fixed point on the screen the electric field from slit opening 1 
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will vary in time according to 1 sin( )oE E t= . The contribution from slit 2 will include a 

relative phase: 2 sin( )oE E t = + . The electric field at the screen is the sum: 

 

1 2 sin( ) sin( )o oE E E E t E t  = + = + + . 

 
Adding the amplitudes in this fashion is known as the superposition principle, i.e., when 
waves combine, you combine the waves by adding them. 
 

Using our derived identity sin( ) sin( ) 2sin cos
2 2

A B A B
A B

+ −   
+ =    

   
, with 

A t = +  and B = , 

 

( ) ( )
2 sin cos

2 2
o

t t t t
E E

     + + + −   
=    

   
. 

 

2
2 sin cos

2 2
o

t
E E

  +   
=    

   
 

 

2 cos sin
2 2

oE E t
 


   

= +   
   

 

Remember that the potential energy of our harmonic oscillator is 
21

2
V kx=  and x is a sine 

wave. Therefore we need to square the amplitude to get the energy. The power is the energy 
produced per time interval and the intensity is the power per unit area. To simplify all this, just 
write for the intensity, which will be a measure of brightness, 
 

2 2 2 24 cos sin
2 2

oI E E t
 


   

= +   
   

 

 

The instantaneous maximum occurs when 
2sin 1

2
t




 
+ = 

 
. Therefore, 

2

max cos
2

I I
 

=  
 

 with 
2

max 4 oI E . 
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As the optical path difference varies, you will get different levels of brightness as the waves 
interfere. The max will occur when the waves are in phase at the screen, i.e., crests meet crests 
and troughs meet troughs. In such a case we have constructive interference. When crests 
meet troughs and vice versa we get darkness, minima. This case is called destructive 
interference. As you move up the screen the optical path difference increases and the phase 
goes through cycles of constructive and destructive interference. Regions of brightness and 
darkness will alternate. The overlapping circles below form a display called a Moiré pattern. 

Two-Slit Interference using Moirè Circles taken from Wikimedia: SharkD. Creative Commons 
 

Remember the importance of doing calculations in more than one way? What about phasors? 
 

( )

1 2 sin( ) sin( ) i t i t

o o o oE E E E t E t E e E e     += + = + + → +  

 

( )1i t i

oE E e e = +  

 

( ) ( )
2

1 1 *i t i i t i

o oI E E e e E e e      = + +
     

 

( ) ( )1 1i t i i t i

o oI E e e E e e   − −+ +  
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( )( ) ( )2 21 1 1 1i i i i

o oI E e e E e e   − −+ + = + + +  

 
 

( )2 2 i i

oI E e e −+ +  

 

( ) ( )cos sin cos sin 2cosi ie e i i      −+ = + + − =  

 

( )2 22 2cos 2 (1 cos )o oI E E + = +  

 

21 cos
cos

2 2

 +
=  

 

2 24 cos
2

oI E
 

 
 

 

 

2

max cos
2

I I
 

=  
 

 with 
2

max 4 oI E , as we found before. 

 

Note that cos sinie i  = +  with cos sinie i  − = −  leads to 

 

2cosi ie e  −+ =      and     2sini ie e  −− =  

 

cos
2

i ie e 


−+

=      and     sin
2

i ie e

i

 


−−

=  

 
Very powerful stuff. 

 
L7. Beats. Beats occur when two waves of equal amplitude and nearly the same frequency are 
added. The waves drift in and out of phases with a pulsating effect. The variation in strength is 
called an amplitude modulation. We choose phases to be zero at x = 0 and t = 0 for the two 
waves. 

1 1 1sin( )oE E k x t= −      2 2 2sin( )oE E k x t= −  

 

1 2 1 1 2 2sin( ) sin( )o oE E E E k x t E k x t = + = − + −  
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Let 1 1A k x t= −  and 2 2B k x t= − . Use the following identity we derived earlier. 

 

sin( ) sin( ) 2sin cos
2 2

A B A B
A B

+ −   
+ =    

   
 

 

1 2 1 2 1 2 1 2( ) ( ) ( ) ( )
2 sin cos

2 2 2 2
o

k k x t k k t
E E

   + + − −   
= − −   

   
 

 

Let 
1 2

2

k k
k

+
= ,  

1 2

2

 


+
= ,  1 2k k k = − , and 1 2   = − . 

 

2 sin cos
2 2

o

k
E E kx t x t




   = − −    
 

 

2 cos sin
2 2

o

k
E E x t kx t




    = − −    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wikipedia: Ansgar Hellwig. Creative Commons 
 

The beat frequency is 2  . Why? 

 

The  sin sin ( )kx t k x t
k




 
 − = −  

 
 wave is called the carrier wave with wave velocity 
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pv
k


=  , named the phase velocity. 

The envelope modulation factor  
1 1

cos cos ( )
2 2

kx t k x t
k




 
 −  =  −  

 advances 

at the speed gv
k


=


, which is called the group velocity. 

 

Here 
1

1

1

v
k


=  and 

2
2

2

v
k


=  will be equal if the speed does not depend on wavelength. 

1 2

1 2

v
k k

 
= =  

Then 

1 2 2

1 2 1 2 1 1 1

2 21 2 1 2

1 1

( ) / 2

( ) / 2
1 1

p

v
k k k

v
k kk k k kk

k k

  

   
+ +

+ +
= = = = =

+ +
+ +

. 

Now use 
2

2

2

v v
k


= =   in the form of 2 2k v = . 

2 2 2

1 1 1

2 2 2

1 1 1

(1 )

1 1 1
p

k v k
v v v

k k k
v v

k k k

k k k


+ + +

= = = =

+ + +
. 

 

Likewise 

1 2 2 2

1 2 1 1 1 1

2 2 21 2

1 1 1

(1 )

1 1 1
g

k v k
v v

k k k k
v v

k k kk k k

k k k

 

 
− − −

−
= = = = = =

 −
− − −

. 

 

1 2g pv v v v v= = = =  

 
Nondispersive Medium: “Everybody” travels at the same speed! 
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L8. Group Velocity and Dispersion. If the wave travels in a medium other than vacuum, there 
will be dispersion. We now relate this chapter (L) the previous chapter (J). In general 

g p

d
v v

dk


=  . 

Start with kv =  and take the derivative using the product rule. 

g

d dv
v v k

dk dk


= = + . 

Now use 

c
n

v
=  in the form 

c
v

n
= . 

2g

d c d c c c dn
v k k

dk n dk n n n dk

    
= = + = + −   

   
 

 

1g

c k dn
v

n n dk

 
= − 

 
 

 
L9. A Treacherous Trap. “To illustrate the treacherous nature of the convention described 
above for waves traveling to the right and left,” see the “arrangement where two speakers are 
separated by a distance 2d. The speakers emit sine waves in phase, which are picked up by the 
microphone at the middle position between the two speakers.” 
 
James Perkins and Michael J. Ruiz, "A Reliable Wave Convention for Oppositely Traveling 
Waves," The Physics Teacher 56, 622 (December 2018). pdf 

 
“Let the wave leaving the left speaker be 

 

yR(x,t) = A sin (kx – t), 
 
where the subscript R designates that 
the wave travels to the right. For the 
wave emitted from the right speaker, we 

arrive at the function by shifting a sine wave a distance 2d to the right and changing – t to + t 
so that the wave moves to the left: 
 

yL(x,t) = A sin[k(x –2d) + t]. 
 
The superposition of the waves at the microphone, i.e., at x = d, is then  
 

y(d,t) = A sin (kd – t) + A sin(–kd + t) = 0, 
 
which disagrees with the experimental observation.” (Perkins and Ruiz, 2018) 

http://www.mjtruiz.com/publications/2018_12_waves.pdf
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The figure below will help us see our way through this paradox. Our convention is introducing a 
subtle 180° phase shift at the right for the sine waves! This phase shift creeping in unbeknownst 
to us leads to the paradox – our erroneous conclusion that destructive interference occurred at 
the center of our two-speaker arrangement. The phase shift does not enter when you switch the 

minus sign in front of the kx instead of the t for the left-traveling wave 
 

 
 

“Cosine and sine waves are first shifted a distance 2d to the right, cosine waves for (a) and (c); 

sine waves for (b) and (d). The convention where the sign of  changes is used for the left-
traveling waves in (a) and (b); the convention where the sign of k changes is employed for the 
left-traveling waves in (c) and (d). The latter convention gives the correct conclusion that 
constructive interference occurs at the center point for both the cosine (c) and sine (d) waves.” 
 
So it is best to use 
 

( , ) sin( )right x t A kx t = −           ( , ) sin( )left x t A kx t = − −  

 

( , ) cos( )right x t A kx t = −           ( , ) cos( )left x t A kx t = − −  

 
( )( , ) i kx t

right x t Ae  −=           
( )( , ) i kx t

left x t Ae  − +=  

 
L10. Summing Multiple Waves.  We can consider a superposition of many waves by an 
integral. Here is a more general wave traveling to the right. 
 

( )( , ) ( ) i kx tx t A k e dk −=   

 
When the wave is localized, we call it a wave packet. 


