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Modern Optics, Prof. Ruiz, UNCA                     doctorphys.com 
Chapter E. Lenses 
 
E1. Lens Types 

Common lenses are made of glass, shaped with spherical surfaces. The spherical choice is due 
to the ease in grinding uniform curvatures. Lenses, like mirrors, are important optical elements 
used in countless applications. The table below relates the basic principles of physics to the 
applications. 

Basic Laws of Physics and Optical Applications 

Physics Principle Optical Element 

Reflection Mirrors 

Refraction Lenses 

The basic types of spherical mirrors and lenses are summarized in the next table. 

Basic Types of Spherical Mirrors and Lenses 

Category Name 

Mirror 
Convex 

Concave 

Lens 
Diverging 

Converging 

 

Converging Lens (Christa) Diverging Lens (Christa) 

 

 

Photographs by Wendy Newman, June 5, 2002 in RH 119. 
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Demonstration lenses are often employed in physics classes to illustrate properties of lenses. 
These lenses are cut so that they can be placed against a wall allowing light rays to skim the 
wall surface (see below). 

Blackboard Optics' for Class Demonstration 

Converging Lens Diverging Lens 

 
 

Courtesy Richard E. Berg, Lecture Demonstration Facility, University of Maryland 

A converging lens refracts parallel light rays toward a point, i.e., the parallel rays converge. 
These rays keep going in the above left photo since there is nothing to stop them.  

The diverging lens refracts parallel light so that the outgoing rays diverge instead of converge. 

Notice that the converging lens has convex surfaces, while the diverging lens is concave on 
each side. A converging lens is also called a convex lens and a diverging lens is referred to as 
a concave lens. Don't get confused with mirrors since parallel rays reflecting from a convex 
mirror diverge, i.e., do the opposite when compared to a convex lens. Similarly, for the concave 
mirror and concave lens we find opposite behavior. Most of the time, we will use the converging 
and diverging terminology to emphasize what is going on. 

Look carefully at the right photo above. You will see that the diverging lens has been made by 
joining together two pieces of glass. The left piece is concave on the left side and flat on the 
right, which right side you find in the middle of the combination. The second piece is flat on the 
left and concave on the right. Each of these pieces are more precisely referred to as plano-
concave, meaning one surface is planar and the other concave. 
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Rough Sketch of Above Blackboard Optics Demonstration 

Converging Lens Diverging Lens 

 

 

A sketch of our observations appears above. The point where parallel light is brought to a point 
by a converging lens is called the focal point or focus. A magnifying glass is a converging lens 
and on a sunny day, light from the Sun can be focused to a point. But the point is bright. Don't 
stare at it. 

The Sun is so far away that the rays of sunlight reaching the lens can be considered parallel. 
The focus is therefore the point where the sun's rays meet. The distance from the converging 
lens to the focus is called the focal length. These are similar definitions to the ones we 
employed with spherical mirrors. 

Strictly speaking, the diverging lens does not have a focus since entering parallel light diverges 
on leaving the lens. However, the divergent rays appear to originate from a common point. We 
call this point the focus for a diverging lens, but refer to it as a virtual focus or virtual focal 
point. The focal length for a diverging lens is defined as the distance from the virtual focus to 
the lens, but a minus sign is included in order to distinguish between the two types of lenses. 

Three-Word Puns 

Speaking about the focus of a lens brings us to a perfect triple-word pun. A triple-word pun is 
very rare to come by. Here is one sent to your instructor by his mother during the 1980s. There 
are three puns here, but we do not consider this a perfect triple-word pun since the three puns 
are not consecutive. The words in between keep it from being a perfect triple pun. 
 

"The symphony was playing Beethoven's Ninth. The men who manned the bass horns 
were bored. Their only part was a couple of deep toots right at the end. They decided to 
sneak across to the tavern for a beer. They thought in all decency they should give the 
director notice. 

So they wrote a note, 'Have gone across the street for a beer.' They attached it by a 
paper clip to the last page, but made a mistake and clipped two pages together. 
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The director waved the baton expertly. Then he came to the next to the last page, turned 
the sheet, and to his consternation found the note. 

He stopped the music and announced in dismay: ‘It's the end of the Ninth, the score is 
tied and the basses are loaded.’" Dan O'Briant, Atlanta Constitution, Quote. 

Perfect Three-Word Pun 

Now for the perfect pun, which first appeared sometime in the 1940s and reappeared in the 
1970s in a Peanuts Cartoon. A family with three sons owned a cattle farm. When the father 
passed away the land was divided up into three parts and one part was inherited by each son. 
The family's house was situated in the center of the large farm. They wanted a name for the 
house and surrounding lands. Their mother suggested "Focus" since that is where the ... 

Sons Raise Meat 

Sun’s Rays Meet 

 
E2. Diverging Lens 

Ray 1, the parallel ray, for a diverging lens is shown below. The top of the diverging lens can be 
approximated as a triangle. The refraction occurs at the two interfaces: air-glass and glass-air 
(left figure). Light bends toward the normal as light enters glass from air. Then the light travels in 
a straight line through the glass until it reaches the second interface. At this latter glass-air 
interface, the light refracts away from the normal. The net effect is for the light to diverge away 
from the optic axis. In the second figure we simplify our sketch to show the net effect, making 
one bend in the middle of the glass. Of course, in reality the light refracts at the surfaces. 

Ray 1 for Diverging Lens: Parallel Ray Refracts as If Coming From F 

Refraction by Two Surfaces Net Refraction (Simplified Sketch) 

  

The lower parallel ray seen in the right diagram refracts downward at both the air-glass and 
glass-air interfaces due the curvature of the interface in each case. Imagine the above triangle 
flipped the other way. In conclusion, the rule for Ray 1 for a diverging lens is that parallel light 
refracts as if coming from the point F. 
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Ray 2 for a diverging lens is one that passes through the middle of the lens. The region in the 
center of the lens is fairly flat. If light passes through a flat piece of glass, the light refracts twice; 
however, there is no change in direction. See the left diagram below. If you look carefully at the 
left diagram, you will see that the outgoing light ray is raised slightly since the ray in the glass 
bends upward. For thin glass, we can neglect this. Regular pane glass windows are thin enough 
that you don't notice anything strange going on. You can look right out of a glass window and 
often not realize there is glass there at all. 

Once around 1990 a guy walked through a glass door at the Registrar and broke it. He was 
okay though. Then years later (c. 2000) a gentlemen tried to walk through the inner glass door 
near the Department of Physics entrance to Robinson Hall - he didn't recognize it was a door. 
The glass didn't break that time. 

Ray 2 for Diverging Lens: Ray Through Center Passes Straight Through 

Light Through Pane Glass Net Refraction (Simplified Sketch) 

  

The rule for Ray 2 is that light passes through the center, continues undeviated. In our simplified 
sketch above, we simply draw the ray straight through. 

Ray 3. For the third ray we need the focal point on the other side. Since our lens can be held 
either way, there is a focal point on each side. Remember how we ran Ray 1 in reverse to arrive 
at Ray 3 for the spherical mirror. We can think this way here also. Below, we aim at the F on the 
other side of the lens and the ray goes out parallel. 

Ray 3 for Converging Lens: Ray Aimed at Second F Leaves Parallel 
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For Ray 1 we think parallel first then F. For Ray 3 we think the opposite, considering F (the one 
of the other side) first and then obtaining a parallel ray. Here is a summary of the three key rays 
for the diverging lens. 

Ray Rules for Diverging Lens 

Ray Rule 

1 Parallel to the optic axis, refracts as if coming from F. 

2 Goes to the center, passes straight through. 

3 Aimed at F on the other side, refracts parallel to the optic axis. 

It is very nice that we do not have to draw normals and use the law of refraction for each ray 
when we analyze the diverging lens. We simply use our derived ray rules, which we have 
arrived at from the law of refraction. Images appear small as an observer looks through a 
diverging lens. 

Diverging Lens 

 
Photo by Doc Ruiz, February 27, 2002 
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Diverging Lens Ray Diagrams. We only need two of the key rays in order to locate an image 
due to a diverging lens. This is the case in general with mirrors and lenses. The basic steps are 
outlined below. 

• Sketch the diverging lens and a central horizontal line (the optic axis). Label the points F. 
• Sketch a vertical object arrow. 
• Draw Ray 1 from the tip of the arrow to the lens. This ray is parallel to the optic axis. 
• Use the rule for Ray 1 to sketch the refracted ray. Always place a small direction arrow 

on each ray. 
• Draw Ray 2 from the tip of the arrow. This ray passes straight through the center. 
• The image of the arrow tip is where the divergent rays appear to come from. 
• Sketch in the vertical arrow (image) with a dotted line to indicate virtual image. 

 
 
 

Ray 3 is aimed at the F on the right side of the lens. As we have done before, we conclude that 
the location of the image is where the light rays, extended backwards, intersect. Note that Ray 2 
is the only ray that actually passes through the image tip. However, since all other rays need to 
be extended backwards, the image is virtual. For a real image, all of the rays must actually pass 
through the image. Each observer concludes that the image is in the unique location illustrated 
above. The virtual image is smaller and upright. 

The diverging lens must be thin since our ray rules are based on the assumption of a thin lens. 
When you make your own sketches, you can draw a vertical line for the diverging lens, similar to 
what you did for spherical mirrors. 
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You only need two rays to locate the image. 
 

 
 

Below is a table summarizing characteristics of the image for different object locations. Again, it 
is convenient to define Point O as the point where the lens intersects the optic axis. Simply think 
of Point O as the center of the thin lens. 

 
 

Object Location 
Image Characteristics 

Size Location Type 

Infinity Zero At Left F Virtual 

Between Infinity and the Lens Smaller Between Left F and O Virtual 

Touching the Lens Same Size At the Lens Virtual 
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E3. Converging Lens 

Ray 1 for a converging lens is shown below. The refraction occurs at the two interfaces similar 
to the refraction that occurs by the surfaces shown in the left figure. Light bends toward the 
normal as light enters glass from air. Then the light travels in a straight line through the glass 
until it reaches the second interface. At this latter glass-air interface, the light refracts away from 
the normal. The net effect is for the light to converge toward the optic axis. In the second figure 
we simplify our sketch to show the net effect occurring in the middle of the glass. Of course, in 
reality the light refracts at the surfaces. 

Ray 1 for Converging Lens: Parallel Ray Refracts Through F 

Refraction at Upper Part of Lens Net Refraction (Simplified Sketch) 

  

The lower parallel ray refracts upward at both the air-glass and glass-air interfaces due the 
curvature of the interface in each case. Imagine the above triangle flipped the other way. In 
conclusion, the rule for Ray 1 for a converging lens is that parallel light refracts so that the 
outgoing rays travel to F, where they cross and continue if unobstructed. 

Ray 2 for a converging lens behaves the same way that Ray 2 does for the diverging lens. The 
central region of the lens can be approximated as a thin flat piece of glass 

Ray 2 for Diverging Lens: Ray Through Center Passes Straight Through 

Light Through Pane Glass Net Refraction (Simplified Sketch) 
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The rule for Ray 2 is that light passes through the center, continues undeviated. In our simplified 
sketch above, we simply draw the ray straight through. For a thin lens we can neglect the slight 
shift in the outgoing ray evident in the left diagram. 

Ray 3. For the third ray we need the focal point on the other side. Remember that since a lens 
can be held either way, there is a focal point on each side. Recall how we ran Ray 1 in reverse 
to arrive at Ray 3 before. We can think this way again. Below, we go through the F on the left 
side of the lens and the ray goes out parallel. 

Ray 3 for Converging Lens: Ray Goes Through Left F and Leaves Parallel 

 

For Ray 1 we think parallel first then F. For Ray 3 we think the opposite, considering F (the one 
on the other side) first and then obtaining a parallel ray. Here is a summary of the three key rays 
for the converging lens. 

Ray Rules for Converging Lens 

Ray Rule 

1 Parallel to the optic axis, refracts through F. 

2 Passes through the center of the lens, going straight through. 

3 Passes through F and refracts parallel to the optic axis. 

As with the diverging lens, we do not have to draw normals and use the law of refraction for 
each ray when we sketch ray diagrams. We simply use our derived ray rules, which we have 
arrived at from the law of refraction 

The laws for the converging and diverging lens are so close in wording that you can remember 
one set of rules. For Ray 1, think "refracts through" (right F for converging lens) or "as if coming 
from” (left F for diverging lens). For Ray 2, you go through the center of the lens undeviated. For 
Ray 3, you either go through the left F (converging), or aim at the right F (diverging), with the 
result that the outgoing ray is parallel. 
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Combined Ray Rules for Lenses 

Ray Rule 

1 Parallel to the optic axis, refracts through left F or as if coming from there. 

2 Passes through the center of the lens, going straight through. 

3 Passes through left F or aims at right F and refracts parallel to the optic axis. 

Can you think of a super framework that combines the spherical mirror rules with those of the 
lenses? 

Similar to the concave mirror, the converging lens produces a variety of different image 
characteristics depending on how far objects are away from it. We first investigate the case of 
the smaller, real, inverted image. This is illustrated in the photo below. Note the small inverted 
images for light passing through the lens. The image of the deck rail is inverted. As we will find 
by analysis, these inverted images are located between the observer (camera) and the lens. 
Since the camera focus is set at close range for this photo, the farther surrounding environment 
is blurred. 

Converging Lens Producing Inverted Smaller Real Image 

 
Photo by Doc Ruiz, February 27, 2002 
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We now proceed to sketch a diagram for the above photo. You only need two of the key rays to 
locate the image. 

 

For our next case, we consider a configuration of subject and lens where the image is virtual, 
larger, and upright. This case corresponds to using a converging lens as a magnifying glass. 

Converging Lens Producing Larger Virtual Image 

 
Photo by Wendy Newman, June 5, 2001 
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The secret here is that the subject must be close to the converging lens. More precisely, the 
subject needs to be between the left focal point F and the lens in order to produce a larger 
virtual image. 

Notice that the arrow is between 
the left F and the lens. We can still 
sketch Ray 3 by placing our ruler to 
align the left F and the tip of the 
object arrow with the lens. We then 
find that we miss the lens.  

No problem. Just extend the lens 
with a line. In a real situation, Ray 3 
may indeed not reach the lens. But 
zillions of other rays do. We are 
restricted to using three key rays 
for quick sketches - so if 
necessary, we extend the lens. 

 

Can you sketch the third main configuration for a converging lens, one that produces an inverted 
larger real image? Check out the inverted and larger wizard's head below. 

Converging Lens Producing Inverted Larger Real Image 

 
Photo by Doc Ruiz, February 27, 2002 
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We are ready to summarize the characteristics of images produced by a converging lens for all 
the different object locations. The three ray-tracing examples you have analyzed, one which you 
did on your own, cover much of the ground for a concave mirror. We build on this to present a 
table which helps you visualize all cases. 

Once again, imagine walking in from infinity from the far left until you touch the mirror. It is 
convenient for us to define regions for the converging lens. Point O is the center of the lens as 
before. Note the similarity to the regions we defined for the concave mirror, where the Point C 
was indicated at twice the focal distance on the left side of the concave mirror. 

 
 

Object 
Location 

Image Characteristics 

Size Location Type Orientation 

Infinity Zero At Right F Real (Inverted) 

Region I Smaller Region II' Real Inverted 

At 2f Equal 2f on Right Real Inverted 

Region II Larger Region I' Real Inverted 

Point F Undefined 

Region III Larger Left of Object Virtual Upright 

Point O Equal Point O Virtual Upright 

 
Check out this cool interactive app by Tom Walsh: Concave and Convex Lenses. Remember 
that a concave lens is the diverging lens and the convex lens is the converging lens. Can you 
verify the above table playing with the app? 
 

https://www.geogebra.org/m/X8RuneVy


Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 

 

E4. Converging Lens Formula 
 

 
From the geometry we have 
 

itan o

i

h h

f s f
 = =

−
     and     

itan o

o i

h h

s s
 = = . 

 
We now proceed to derive two basic formulas similar to what we did for the concave mirror. It 

would be nice to be able to figure out the image distance is  and the magnification like we did 

earlier. First we derive the image distance formula. From 
 

io

i

h h

f s f
=

−
     and     

io

o i

h h

s s
= , 

 
we can proceed with 

ii

o

s f h

f h

−
=      and     

ii

o o

s h

s h
= . 

 
The left equation looks simpler than what we found for the concave mirror. We continue below. 
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We can get the magnification by comparing the height of the image to the height of the object. 

The magnification of the image relative to the object is found from 
ii

o o

s h

s h
= . We can write 

i

o

s
M

s
= − , 

 
where the minus sign is included since the image is upside down. Now notice that when the 

object distance os → , the image distance is f→ . Also note that the size of the image 

goes to zero since 0
large

i i

o

s s
M

s
= − → →  as os → . Note that positive is  means to 

the right of the lens. This convention makes sense since for lenses, positive image space can 
be defined as the space on the right side since light goes through the glass rather than reflecting 
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as with the mirrors. So positive image space for a mirror is on the same side as from where the 
light comes since reflection is natural for a mirror. Positive image space for a lens is natural on 
the right side of the lens since light enters the glass, refracts, and passes through it. Negative 
image space for a lens is on the left side since light is coming in from the left in our diagrams. 
 
E5. Diverging Lens Formula 

 
From the geometry we have 
 

otan i

i

h h

f s f
 = =

−
     and     
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o i

h h

s s
 = = . 

 
We now proceed to derive two basic formulas similar to what we did for the converging lens. 
From 
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i
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we can proceed with 
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These equation are similar to those we found for the converging lens. We continue below. 
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1 1 1
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But according to our convention 0is   since it is in negative lens image space. So we can 

change the sign in the above equation due to this sign convention. If we define the focal length 

for a diverging lens such that 0f  , then we get the same equation for both the converging 

and diverging lenses. 

1 1 1

o is s f
+ =  
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The same magnification formula works 
 

i

o

s
M

s
= − . 

 

Note that for 0is   we have 0M  , meaning the orientation is upright. 

 

Now notice that when the object distance os → , the image distance is f→  on the left 

side of the lens since 0f   for a diverging lens. Also note that the size of the image goes to 

zero since 0
large

i i

o

s s
M

s
= − → →  as os → . 

 
E6. A Two-Lens System 
 
Before considering two lenses, let’s gain confidence in using the lens formula by analyzing a 
case where we know the answer. Below is a super symmetric situation drawing carefully using 

our ray rules. We can see that 2i os s f= =  and 1i

o

s
M

s
= − = − . 

 

Let’s use the formula with 2os f= . Then 
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1 1 1

o is s f
+ =      gives     

1 1 1

2 if s f
+ = ,     and 

 

1 1

2is f
= , 

 

2is f= . 

 
Remember the concave mirror when you are at twice the focal length, which is a radius distance 
away, you have the image inverted right under the object. The image is the same size. We have 
the converging lens version of the same-size real inverted image as 
 

2
1

2

i

o

s f
M

s f
= − = − = − . 

 
Now we are ready for a two-lens system. See below where we have added a second lens, with 
focal length half of the first lens, where its center coincides with a focal point F of the first lens. 
Therefore, the separation between the two lenses is d = f. The final image in the previous 
example now becomes an intermediate image.  
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We can locate the final image by using Ray 3 for the first lens. The outgoing parallel ray is Ray 1 
for the second lens; therefore, it refracts heading toward F2. To see specific numbers, let f = 100 
cm. The final image looks like 2/3 of f/2, which would be (2/3)(50) =   33 cm. How do we get this 
final image distance from the formula? 
 
Well, let’s use the intermediate image to serve as the object for the second lens. But it is to the 
right of the second lens, 100 cm beyond the second lens. So try -100 cm as the object distance. 
The math suggests this choice since when the image was on the unexpected side, the image 
distance was negative. Mathematics is teaching us the physics. Proceeding for the second lens, 
the general formula 

1 1 1

o is s f
+ =      becomes     

1 1 1

100 50is
+ =

−
. 

Solving for is , 

1 1 1

50 100is
= + , 

 

1 2 1

100 100is
= +  

 

1 3

100is
=  

 

100
33 cm

3
is = = . 

 
The magnification formula for the second lens gives 
 

33 1
0

( 100) 3

i

o

s
M

s
= − = − = 

−
, 

 
which means it does not flip compared to the intermediate image. Both have the same 
orientation and indeed it looks from the ray diagram that the magnification is about 1/3. But the 
total magnification shows an inversion relative to the original object. 
 

1 2

1 1
( 1)( )

3 3
M M M= = − + = −  
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E7. The Lensmaker’s Formula 
 
The lensmaker’s formula related the index of refraction of the lens and the radii of curvature of 
its surfaces to the resulting focal length of the lens. Our derivation of this cool formula will follow 
that of C. Bond, whose derivation I found on the Internet. 
 
We start the analysis by analyzing one interface: the air-glass boundary and related parameters. 
 

 

We start by using the law of sines for the triangle ABC placing our attention on 1BAC  =  

and 1180ABC  = − . The law of sines states that the sine of the angle over its respective 

opposite side in the triangle is the same for all three angles. 
 

1 1sin sin(180 )

oR s R

 −
=

+
 

Now use the law of sines for the triangle CBD focusing on the angles 2  and 2 . 

 

2 2sin sin

is R R

 
=

−
 

Note that 1 1sin(180 ) sin − =  since the sines of supplementary angles are equal. 

Therefore 

1 1sin sin

oR s R

 
=

+
. 
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If we add Snell’s law 1 2sin sina gn n = , we get three equations. 

 

1

2

sin

sin

g

a

n

n




=   

1 1sin sin

os R R

 
=

+
  

2 2sin sin

is R R

 
=

−
 

 
Dividing the middle equation by the third one, we get 
 

1 1

2 2

sin sin

sin sin

i

o

s R

s R

 

 

 −
= 

+ 
. 

 
Now we use Snell’s law, the first equation, to arrive at 
 

1

2

sin

sin

g i

a o

n s R

n s R





 −
= 

+ 
. 

 
Finally it’s time for approximations. We assume that rays are close to the optic axis and 
incoming rays have very small angles of approach. Such rays are called paraxial rays and the 

approximation is called the paraxial approximation. The   in our figure is small and we can 

write 

1

0

tan
h

s
 =  , 2tan

i

h

s
 = , and 

1

2

tan

an

i

o

s

s




= . 

Furthermore, small angles imply 
 

sin tan    . 

 
Let’s pause to check this out. Let’s pick a decent size angle compared to the very small, e.g., 
 

10 10 radians 0.17 rad
180


 =  =


. 

 

sin 0.17 0.17=      and     tan 0.17 0.17= . 

 

Let’s push it to the even larger 20 0.34 rad = . Then, 

 

sin 0.34 0.33=      and     tan 0.34 0.35= . 

 
A pretty good approximate if it even works for 20° to about (0.01/0.33) x 100% = 3%.  
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Here is a summary of our equations: 
 

1

2

sin

sin

g i

a o

n s R

n s R





 −
= 

+ 
         and       

1

2

tan

an

i

o

s

s




=  

 

Now applying sin tan    , we have 

 

1

2

g i

a o

n s R

n s R





 −
= 

+ 
        and        

1

2

i

o

s

s




= . 

 
Combining these, 

g i i

a o o

n s R s

n s R s

 −
= 

+ 
. 

 
There is a nice rearranged form of this equation. Let’s get it. 
 

( ) ( )g i o a i on s R s n s s R− = +  

 

g i o g o a i o a in s s n Rs n s s n s R− = +  

 

g o i g o a o i a in s s n s R n s s n s R− = +  

 

( )g a

o i a i g o

n n
s s n s n s

R

−
= +  

 

( )g a a i g o

o i

n n n s n s

R s s

− +
=  

 

( )g a ga

o i

n n nn

R s s

−
= +  

 

( )g g aa

o i

n n nn

s s R

−
+ =  
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To emphasize this equation stands for the left interface of the lens, we add subscripts 1. 
 

1 1 1

( )g g aa

o i

n n nn

s s R

−
+ =  

 
Since the glass side does not go on forever, let d be the thickness, i.e., distance from the left 
interface to the right. For the right boundary, we go from glass to air. Therefore, 
 

2 2 2

( )g a ga

o i

n n nn

s s R

−
+ = . 

 

The object distance for the second interface can be seen in the figure as 2 1o is d s= − . 

 

 
 
The pair of equations for the two boundaries are then 

 

1 1 1

( )g g aa

o i

n n nn

s s R

−
+ =         and        

1 2 2

( )g a ga

i i

n n nn

d s s R

−
+ =

− . 
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Adding these equations, 
 

1 1 1 2 1 2

( ) ( )g g g a a ga a

o i i i

n n n n n nn n

s s d s s R R

− −
+ + + = +

−  

 

1 1 1 2 1 2

1 1
( )

g ga a
g a

o i i i

n nn n
n n

s s d s s R R

 
+ + + = − − 

−  
 

 

1 1 1 2 1 2

1 1 1 1
( )a a

g g a

o i i i

n n
n n n

s s d s s R R

   
+ + + = − −   

−   
 

 

1 1

1 1 1 2 1 2

( ) 1 1
( )

( )

a i i a
g g a

o i i i

n d s s n
n n n

s s d s s R R

   − +
+ + = − −   

−   
 

 

1 1 1 2 1 2

1 1
( )

( )

a a
g g a

o i i i

n nd
n n n

s s d s s R R

   
+ + = − −   

−   
 

 

1 2 1 2 1 1

1 1
( )

( )

a a
g a g

o i i i

n n d
n n n

s s R R s d s

  
+ = − − −   

−   
 

 

For a thin lens 0d   and 

 

1 2 1 2

1 1
( )a a

g a

o i

n n
n n

s s R R

 
+ = − − 

 
. 

 

Using 1an =  and gn n= , 

 

1 2 1 2

1 1 1 1
( 1)

o i

n
s s R R

 
+ = − − 

 
. 
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We can assign 1o os s= , the distance from the object to the then lens. Since 2is  is the 

distance to the final image, we can assign 2i is s= . Then, the equation becomes 

 

1 2

1 1 1 1
( 1)

o i

n
s s R R

 
+ = − − 

 
. 

But for a thin lens 
 

1 1 1

o is s f
+ = . 

 
Therefore, 

1 2

1 1 1
( 1)n

f R R

 
= − − 

 
. 

 
This cool formula is called the lensmaker’s formula. The lensmaker’s formula relates the 
effective overall focal length of the lens to the index of refraction of the glass and curvatures of 
the two lens surfaces. 

Lensmaker Below (Is the lens converging or diverging?) 

 
 

 


