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Modern Optics, Prof. Ruiz, UNCA             doctorphys.com 
Chapter C. Rainbows 
 
C1. Introduction to Rainbows 
 

 
 
Fig. 1. UNCA Rainbow, 7:45 pm, August 4. 2003. Photographer Mike Honeycutt (IT). 

 
A rainbow visible from our school, UNCA, is seen in Fig. 1. The photographer was Mike 
Honeycutt form UNCA Instructional Technology (IT). Mike was at UNCA in the evening as 
he was often working during off hours to keep the UNCA computers functioning on 
campus. He told me that when he saw the rainbow, he thought of taking some photos for 
my PHYS 101 Light and Visual Phenomena, a course he took when he was a student at 
UNCA. He retired around 2010. 
 
The brighter rainbow is called the primary rainbow, while the dimmer one is the secondary 
rainbow. The rainbow angle is the angle measured by the ground observer from the 
horizontal to the rainbow’s apex. We will do the calculation for the primary rainbow. If you 
look at the top of the primary rainbow behind the tree, you cam see the angle from the 
horizontal to the top is about 45°. If you imagine standing on the sidewalk and lifting your 
arm to point to the top of the primary rainbow, you arm is extended about halfway to the 
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sky right above you, the zenith. Since from horizontal to zenith is 90°, we can estimate the 
rainbow angle to be 45°. It is always a powerful goal to estimate a research answer before 
you do a detailed study. Of course, you might not always be able to arrive at such an 
estimate. But you should always try. 
 

Fig. 2. Cup of Coffee at the End of a 
Rainbow. Courtesy Commander John 
Bortniak, NOAA. 
 
But first check out Fig. 2 showing us what is 
found at the end a rainbow. The photo was 
taken in September 1992 by Commander 
John Bortniak, NOAA Corps. NOAA stands for 
National Oceanic and Atmospheric 
Administration, in the U.S. Department of 
Commerce. 

Note that red is on top for a primary rainbow. 
For the secondary rainbow, the colors are 
reversed with the blue end of the spectrum on 
top. Compare the colors for the two rainbows 
seen in Fig. 1. 
 
To help visualize why red is on top, see Fig. 3 
below. White light enters the water drop. The 
refracted rays bend towards the normal. The 
difference between the blue and red rays is 
highly exaggerated for easy visualization. The 
blue ray goes over the observer’s head in the 
left figure. Therefore, you see red  on top. The 
other colors come from drops that are lower. 

 

 
 

Fig. 3. Sketch of Rays for Primary Rainbow. Red is on Top. 
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Note the reflection at the back of the drop. The incident and reflected angles are equal. We 
ignore the portion of light that goes out the back of the drop. We also ignore reflected rays 
as the white light enters the drop and the blue and red rays leave the drop. Otherwise, the 
figure would be too cluttered. Our goal in this chapter is to drive the 40° rainbow angle for 
the primary rainbow. See Fig. 4 for the order of the colors in a primary rainbow. The order 
from top to bottom is Red, Orange, Yellow, Green, Blue, and Violet. The classic memory 
trick is ROY G. BIV, where R = Red, O = Orange, Y = Yellow, G = Green, B = Blue, I = 
Indigo, and V = Violet. 
 

 
 

Fig. 4. Primary Rainbow over the Yellowstone Landscape, Wyoming 
Courtesy Photographer Todd Cravens, Photo via Good Free Photos 

 
 
 
 
 
 
 
 

https://www.goodfreephotos.com/
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Fig. 5. Sketch of Rays for Secondary Rainbow. Blue (Violet) is on Top. 
 
Fig. 5 illustrates the secondary rainbow. There are two reflections inside the drop and the 
outgoing light is therefore dimmer. Note that the white light enters the drop here in the 
bottom half of the raindrop when compared to the case of the primary rainbow of Fig. 3. 
The blue end of the spectrum is on top for the secondary rainbow and the spectrum is 
reversed. 
 

Fig. 6a. Raindrop. 
 
Light enters the raindrop of Fig. 6a with 

an angle of incidence  , the angle 

measured from the ray to the normal. 
The normal’s are the red dashed lines. 
They are perpendicular to the 
circumference in all cases since they 
emanate from the center of the circle. 
 

The angle   is the refracted angle. 

Note that when   is an incident angle 

for reflection that the reflected angle is 

also  . Four angles are marked   

since they are in two isosceles 
triangles. The equal sides of these 
triangles are radii. To understand that 

final  . Reverse the ray direction and 

you have incident   coordinated with refracted   similar to the   and   at the 

upper left of the drop. 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 

 

Fig. 6b. Raindrop. 

In Fig. 6b the rainbow angle   is 

introduced. This angle can be 
thought of as an elevation angle. If 
you take your hand at first extended 
in front of you and then raise it to 
point to the rainbow, then you have 
the rainbow angle. 
 
At this stage we do not consider 
that the colors spread out. Colors 
spread out since the index of 
refraction slightly varies for different 
wavelengths. The spread of colors 
due to variation in index of 
refraction is called dispersion. 
 
Note also in Fig. 6b that we have 
identified the third angle in the two 
isosceles triangles. 

 

A triangle has 180°. i.e.,   radians. Therefore, the third angle in an isosceles triangle with 

two   angles is 2 − . 

 
 
Fig. 6c. Raindrop. 
 
We add a short horizontal line left of 
center in Fig. 6c. Note that this 
horizontal line is parallel to the 
horizontal incoming light ray that hits 
the raindrop at the upper left. 
 
Therefore, the angle made from the 
horizontal to the common dashed red 

line must be the same angle  . 

 
Most sources and texts will give one 
master figure for the raindrop, which 
requires you to stare at it to figure 
things out. Here, we build up the 
raindrop figure gradually so that you 
can see each step of the geometry 
unfold. 
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Fig. 6d. Raindrop. 
 
We add a slanted dashed blue 
line parallel to the solid blue exit 
light ray and a short horizontal red 
line. 
 
The angle between the slanted 
dashed blue line and the 

horizontal red line is   as it is a 

reproduction of the blue-red line 
pair at the bottom of the figure. 

The angle   is also the angle 

between the horizontal blue line 
and slanted dashed blue line due 
to alternating interior angles. 
 
I have always nicknamed the 
alternating interior angles rule 
from high school geometry as the 

“Z” or “Zorro” rule since as a kid I watched Zorro making Z letters with his sword (Zorro, 

1957 Disney TV Series). Can you find another   angle somewhere in Fig. 6d? See 

below for the answer. 
 
Fig. 6e. Raindrop. 
 

The   angle added in Fig. 6e 

works because the diagonal blue 
dashed line is parallel to the exit 
light ray blue line and these 
slanted lines meet with the same 
dashed red line. We are now all 
set. The basic geometry has 
been established. The next step 
is to set all the angles in the 
middle of the circle equal to 

360 2  radians = . 

 

2( 2 ) 2     + − + + =  

 

2 4 2     + − + + =  

 

2 4 0  − + =  
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The final result solving for the rainbow angle 
 

2 4  = − + . 

 
How do we arrive at a numerical value for this angle? 
 
Doesn’t the angle depend on where the incoming light hits the raindrop? 
 
Doesn’t the light hit the entire drop anyway? 
 
Why is it there a special rainbow angle in the first place? 
 
As I was writing this page, the very talented artist photographer Colin Leonhardt sent me 
an email from Australia giving me permission to use his fantastic rainbow photo below, 
which illustrates the rainbow angle for a complete rainbow. 

 
Fig. 7. A Full Circle Rainbow over Australia. Astronomy Picture of the Day 9/30/2014. 
Image Credit & Copyright: Colin Leonhardt, Birdseye View Photography, Facebook Page 

 
Question: Why is the Sun behind the photographer? From our earlier figures we see there 
is a reflection at the back of the raindrop. The light then comes back. So the sunlight has to 

https://apod.nasa.gov/apod/ap140930.html
http://www.birdseyeviewphotography.com.au/
https://www.facebook.com/BVPVISUALS
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be behind us as we look forward towards the rainbow. Can you tell the time of day for the 
UNCA rainbow in Fig. 1, knowing the campus and where the Sun had to have been? 

C2. The Rainbow Angle – a Max-Min Calculus Problem 
 
The secret to the answer of the questions posed in the previous example is illustrated in 
Fig. 8. Consider a single light ray entering the raindrop along the horizontal. In Fig. 8a the 
outgoing ray has a modest angle or steepness. In Fig. 8b the incoming ray hits the drop 
higher and has the steepest outgoing angle. In Fig. 8c the incoming horizontal ray hits the 
droplet very far up and the result is again, a modest steepness for the outgoing ray. 
 

   
a. Incoming ray near middle 

of drop giving medium 
rainbow outgoing angle. 

b. Incoming ray hits higher 
on drop giving large (steep) 

rainbow angle. 

c. Incoming ray hits too high 
and the rainbow angle is not 

as steep. 

Fig. 8. The middle gives the rainbow angle, where the outgoing angle is maximized. 
 
Near the maximum steepness, there will be a nearby bundle of rays on either side of the 
maximum that serve to amplify the light. This enhanced light gives us the rainbow. So we 
need to find the maximum 
 

2 4  = − + , 

 

as we scan the different incoming   angles that depend on where the light ray enters the 

raindrop. We have a max-min problem in calculus. We need to find the   where 

 

0
d

d




= , 

 

and then plug that   into 2 4  = − + , which will give max = , the rainbow angle. 

And we expect it to be near 45°, thereabouts. But, we need to find ( )  =  so that we 

have ( )  = , i.e., in terms of one variable  . Then we can proceed with setting 
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( )
0

d

d

 


= . 

 
Fig. 9. Incoming-Ray Region of Fig. 6. 
 

We can relate   and   by Snell’s Law. 

 

air watersin sinn n = . 

 
From our last chapter we know that the index of 
refraction for air is essentially 1. Therefore we take 

air 1n =  and set watern n= . The connection 

between   and   is 

 

sin sinn = , 

 

1 sin
sin

n


 −  
=  

 
. 

 

Then, 2 4  = − +  becomes 

 

1 sin
2 4sin

n


  −  
= − +  

 
. 

 

In taking 

( )d

d

 


, we will need the derivative of the arcsine. Being a theoretical physicist, 

with Richard Feynman as my hero, I include derivations for all steps. Let 
 

1siny x−= . 

 
Then 
 

sin y x=      and     

sin
1

d y

dx
= . 

 
But by the chain rule 
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sin
1

d y

dx
=      can be written as     cos 1

dy
y

dx
= . 

 

The expression cos 1
dy

y
dx

=  leads to 

 

1

cos

dy

dx y
= . 

 

To finish, note that 
2cos 1 siny y= − . But, sin y x= . Therefore, 

 

2cos 1y x= − . 

 
Putting it all together, 
 

1

2

sin 1 1

cos 1

d x dy

dx dx y x

−

= = =
−

, with the compact result 

 
1

2

sin 1

1

d x

dx x

−

=
−

. 

 

Now we are ready to calculate 

( )d

d

 


, where 

1 sin
2 4sin

n


  −  
= − +  

 
 and then 

set the derivative equal to zero. The derivative is 
 

1( ) sin
2 4 sin

d d

d d n

  

 

−  
= − +  

 
. 

Let 

sin
u

n


= . Then  

 

1 1

2 2

sin 1 1 cos
sin (sin )

1 1

d d du du
u

d n du d d nu u

 

  

− − 
= = = 

  − −
. 
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1

2 2

sin 1 cos 1 cos
sin

1 sin
1

d

d n n nu

n

  

 

−  
= = 

  −  
−  
 

 

 

Setting 

( )
0

d

d

 


=  leads to 

1( ) sin
2 4 sin 0

d d

d d n

  

 

−  
= − + = 

 
 and 

 

2

( ) 1 cos
2 4 0

sin
1

d

d n

n

  

 
= − + =

 
−  
 

. 

Bringing the n  into the square root, 

 

2 2

4cos
2 0

sinn




− + =

−
 

 

and things look simpler. We proceed to solve for the   that gives the maximum  . 

 

2 2

4cos
2

sinn




=

−
 

 

2 24cos 2 sinn = −  

 

2 22cos sinn = −  

 
2 2 24cos sinn = −  

 
2 2 24cos sin n + =  

 
2 2 2 23cos cos sin n  + + =  

 
2 23cos 1 n + =  

 
2 23cos 1n = −  
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2

2 1
cos

3

n


−
=  

 
When I was in high school I would always remember the 1.33 index of refraction for water 

as 4/3 and the 1.5 index of refraction for glass as 3/2. Using 4 / 3n = , 

 
2

2 21 1 4 1 16 9 1 7 7
cos ( ) 1

3 3 3 3 9 9 3 9 27

n


−    
= = − = − = =   

   
. 

 

Then, 

7
cos

27
 =  and 

1 7
cos 59.4

27
 −= =  . 

 

For   we need to figure out 
1 sin

sin
n


 −  
=  

 
. 

 
Since I love fractions, 

 

2 7 27 7 20
sin 1 cos 1

27 27 27 27
 = − = − = − =  

 
and 

 

sin 1 20 3 20

27 4 27n n


= = , leading to 

 
 

1 1sin 3 20
sin sin 40.2

4 27n


 − −

  
= = =   

   
. 

 

With 59.4 =   and 40.2 =  , 

 

The rainbow angle 2 4  = − +  is 

 

2(59.4 ) 4(40.2 ) 42 = −  +  =  . 
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Not bad, as we estimated the rainbow angle to be about 45°. 
 
To get the range for the colors we use the extreme values 
 

(violet end) ( 400 nm)=1.345n n = = , 

 

(red end) ( 700 nm)=1.331n n = = . 

 
2 2

2 400
400

1 1.345 1
cos

3 3

n


− −
= =  

 

2
1

400

1.345 1
cos 58.71

3
 − −

= =   

 

2
1

700

1.331 1
cos 59.53

3
 − −

= =   

 

1 1400
400

400

sin sin58.71
sin sin 39.45

1.345n


 − −   

= = =    
  

 

 

1 1700
700

700

sin sin59.53
sin sin 40.36

1.331n


 − −   

= = =    
  

 

 

( )400 400 4002 4 2(58.71 ) 4 39.45 40  = − + = −  +  =   

 

( )700 700 7002 4 2(59.53 ) 4 40.36 42  = − + = −  +  =   

 
Red is on top with rainbow angle 42°. 

Violet is on bottom at 40°. 
 

The secondary rainbow angle will be given as a homework assignment. The answers are: 
 

Violet is on top with rainbow angle 54°. 
Red is on bottom at 50°. 
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The secondary rainbow is outside the primary one due to the larger angles. Colors are 
reversed and the rainbow is dimmer due to the 2 reflections. 

 
The setup for the secondary rainbow appears in Fig. 10. 

 
 

Fig. 10. Ray Diagram for Secondary Rainbow. 
The incoming ray enters the lower section of the raindrop. 

C3. Other Rainbow Effects 
 

Fig. 11. Alexander’s Dark 
Band. Courtesy Petr Kratochvil 
 
Note the darker region 
between the primary and 
secondary rainbows. Since the 
light coming to our eyes from 
the raindrops depends on the 
rainbow angles, we get little 
light action in between the 
rainbows. This dark region is 
named Alexander’s Dark Band 
or Alexander’s Band, after 
Alexander of Aphrodisias who 
pointed it out c. 200 CE. 
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Fig. 12. Supernumerary Rainbow. 
Courtesy Mika-Pekka Markkanen 

In some rainbows you might see a 
band of color separated from the 
main arc of colors at the below of 
the primary rainbow. See Fig. 12. 
These bands are due to 
interference effects where light 
taking different optical paths can 
reinforce at some wavelengths 
(constructive interference) or cancel 
(destructive interference) depending 
on their relative phases. When a 

specific wavelength is in phase with another wave, the crests and trough reinforce and you 
get color enhancement. When a crest of one wave meets the trough of a similar wave the 
crests and troughs cancel and you get no light. 
 
These bands are called supernumerary bows or supernumerary rainbows. These bows 
cannot be explained with the light rays of geometrical optics. They occur when raindrops 
are small with diameters less than a millimeter are these raindrops are very close to being 
the same size. 
 
Fig. 13 is the first photo of a tertiary and quaternary rainbow, taken in Germany during the 
summer of 2011. These rainbows are rare for two reasons. They are very dim due to the 
triple and quadruple reflections in the drop and they are in the general direction of the Sun. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Tertiary and Quaternary Rainbows. Credit: Michael Theusner/Applied Optics 

https://commons.wikimedia.org/w/index.php?title=User:Mpmarkkanen&action=edit&redlink=1

