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Chapter B. Snell’s Law 
 
B0. Introduction 
 

 
 

Fig. 0. Shimmering due to variation in air index of refraction due to heat. 
Exploding a hydrogen balloon in astronomy. Dr. Booker led the demo. Photo by Doc. 

Robinson Hall 125, UNC Asheville, February 28, 2002. 
 

We learn about refraction and the index of refraction in this chapter. The basic law of 
refraction is commonly known as Snell’s Law. In Fig. 0 a hydrogen balloon was exploded 
safely under the direction of Dr. Booker. DO NOT attempt this experiment at home since 
hydrogen gas is very explosive. A hydrogen balloon was prepared by lab manager Susie 
Wright as she ripped off some hydrogen from a gas tank in chemistry. She brought the 
hydrogen balloon to class attached to a long string. Dr. Booker lit a match attached to a 
meter stick and had a student safely light the balloon with the meter stick. The balloon 
exploded and I was ready snapping a photo. The ensuing heat in nonuniform areas 
caused the light to shimmer. Light passing through nonuniform temperatures produce 

http://doctorphys.com/
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mirages, a topic included in this chapter. You can consider the shimmering effect in Fig. 0 
a mirage. 
 
B1. Snell’s Law (High School Derivation) 

Before we proceed to the sophisticated derivation of Snell’s Law using calculus and the 
Principle of Least Time, let’s review a basic derivation from introductory physics. This 
approach does not involve calculus, just trigonometry. Therefore, it is taught in high school 
courses in physics. 
 
I recall seeing the derivation in high school with a diagram similar to Fig. 1 below, but 
without marching soldiers. We are going to include the marching soldiers. I first learned 
about the marching soldiers model many years ago from one of my mentors, Dr. Richard 
Berg, when I was a graduate student at the University of Maryland. He was teaching a 
course called The Physics of Sound and Music. I brought this course to UNCA (c. 1980) 
and developed an online course delivery system for it with my computer programming son 
Evan when he was in high school (1998). This course-delivery system became a top story 
on CNN in 2002: http://www.mjtruiz.com/television.php 
 

 
Fig. 1. Refraction and Marching Soldiers. Image Courtesy University Corporation for 

Atmospheric Research (NCAR), Boulder, Colorado, Material Supported by the 
National Science Foundation (NSF) and NCAR. 

 
 

http://www.mjtruiz.com/television.php
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A nice figure of the marching-soldiers model appears in Fig. 1 Courtesy the University 
Corporation for Atmospheric Research in Boulder Colorado. Soldiers march at an angle 
entering mud from grass. They slow down in the mud. But conservation of people requires 
that the number of rows passing an observer every minute must be the same in the grass 
region and the mud region. Soldiers are conserved. This fact means that the frequency of 
rows passing by per minute remains the same in the grass and mud. But the distance 
between the rows decreases in the mud as the speed of the marching soldiers decreases. 
You can’t march in mud as fast as you can in the grass. 
 
Let’s define some important quantities here. 
 

1. The wavelength   – the distance from one row to the next. 

2. The frequency f – the number of rows that pass you each second (will be a fraction). 
3. The speed v – the speed of the marching soldiers. 
4. The period T – the time for one row to move a distance of one wavelength. 

 
The speed, which is distance / time is then given as 
 

v
T


=

. 

 
But the period T has an inverse relation with frequency f. If one row passes you in 10 
seconds, then the frequency of the rows going by you is 1/10 per second. Therefore, 
 

1
f

T
=

, 

 
and the speed can also be expressed as 
 

v f= . 

 
Now we are ready to derive Snell’s law. See Fig. 2 below, one now looking extremely 
similar to the diagram in my high school physics book. I still possess a copy of the book 
which I purchased for my senior year (1967-1968) at Bishop Eustace Prep in Pennsauken, 
NJ: Physics (2nd edition) by the Physical Science Study Committee (D. C. Heath and 
Company, Boston, 1966). 
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Fig. 2. Refracted Wave Crests of March-
ing Soldiers. 
 
The crests change direction as the soldiers 
first hit the mud on the left extreme of the 
row. They start to march slower while those 
on the right extreme are still marching 
faster. So the row undergoes a change in 
direction much like a car swerving as it 
enters mud at an angle. 
 

Since v f=  is true in the grass and in 

the mud, while the frequency remains the 
same due to conservation of people (rows 
passing by per second), the wavelength 
shortens when the speed decreases. So we 
can write the following pair of equations, 

 

1 1v f=      and     2 2v f= . 

 

These equations lead to 
1 2

1 2

v v

 
= . But 1 1sind =  and 2 2sind = . Therefore, 

1 2

1 2sin sin

v v

d d 
=  and 

1 2

1 2sin sin

v v

 
= . Now 

use the index of refraction definition: 
c

n
v

=  to get 

c
v

n
=  and 

1 1 2 2sin sin

c c

n n 
= , which means 

 

1 1 2 2sin sinn n = . 

 
Fig. 3. The traveling ants again. 
 
The ants figured it out. See Fig. 3, the same figure we encountered in the previous 
chapter. Note how the ants travel approximately in a straight line in the white region as 
they approach the green region. Then they make a bend downward and travel 
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approximately in a straight line in the slower-traveling green region. The green is some sort 
of green mesh or grass, on which the ants cannot walk as fast. 
 
What we know today as Snell’s Law can historically be traced earlier through three key 
scientists shown below. Ptolemy, the Greek mathematician and astronomer, discovered a 
refraction relation that was true only for small angles. The Arab mathematician, 
astronomer, and physicist al-Haytham, also known by the Latinized form Alhazen, wrote 
his Book of Optics, rich in the physics of optics with a version of the law of refraction close 
to what we know today. However, the Persian Ibn Sahl arrived at the law and used it his 
designs of lenses. 
 

 
  

Claudius Ptolemy 
(c. 100 – 170) 

Hasan Ibn al-Haytham 
(c. 965 – c. 1040) 

Ibn Sahl 
(c. 940-1000) 

Greek Mathematician 
and Astronomer 

Arab Mathematician, 
Astronomer and Physicist 

Persian Mathematician 
and Physicist 

Refraction for Small Angles Closer in his Book of Optics Discovers the Law 

 
Fig. 4. Three scientists who worked on refraction. Ibn Sahl finds the law. 

Credits: Ptolemy and al-Haytham images from School of Mathematics and Statistics 
Univ. of St. Andrews, Scotland; Sahl image from https://islaminindonesia.wordpress.com/ 
 
The contribution of Sahl was brought to the attention of the academic community only fairly 
recently in 1990 by the historian of science Roshdi Rashed. Rashed (b. 1936), also a 
mathematician, specializes in the ancient work of Persian and Arabic scientists. During the 
1000 years of the western “Middle Ages” starting at the Fall of the Roman Empire (c. 460) 
European science was stagnant. This period is also called the “Dark Ages.” During this 
time Arabic and Persian science were most prominent in the world. Today, most of our 
names of stars have Arabic names that date from this period. 
 
Centuries later Europe came alive scientifically during the “Scientific Revolution” initiated 
by the Polish astronomer Copernicus with his famous book of 1543, published the year of 
his death. The law of refraction was “rediscovered” independently by the four individuals in 
Fig. 5: the English mathematician and astronomer Harriot, the Dutch mathematician and 
astronomer Snel, the French philosopher and mathematician Descartes, and the French 

https://islaminindonesia.wordpress.com/
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lawyer and mathematician Fermat. The reason for so many rediscoveries is that the first 
two, Harriot and Snel, did not publish their work.  
 
 

    
Thomas Harriot 
(c. 1560 – 1621) 

Willebrord Snel van 
Royen (1580-1626) 

René Descartes 
(1596-1650) 

Pierre de Fermat 
(1601-1665) 

English Mathematician 
and Astronomer 

Dutch Mathematician 
and Astronomer 

French Philosopher, 
Mathematician 

French Lawyer and 
Mathematician 

Rediscovery (1602) Rediscovery (1621) Rediscovery (1637) Least Time (1662) 

 
Fig. 5. Rediscoveries of the Law of Refraction 

Image Credits: Wikipedia 
 
The law is commonly known as Snell’s Law or the Snell-Descartes law. Note that Snell’s 
original name is spelled “Snel.” So you can even find references to Snel’s Law with one “l” 
in the name. Now we turn to the lawyer Fermat and the Principle of Least Time. 
 
B2. Snell’s Law (Fermat Derivation) 

We now proceed to the least time calculation, one involving two media. We return to our 
lifeguard in Fig. 6. This analysis is very profound since it offers a connection of the ray 
diagrams of geometrical optics to the wave result in the previous section. We will get 
Snell’s Law without introducing wavelength! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. A Lifeguard Getting to the Drowning Person in the Shortest Time. 
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In Fig. 6 the lifeguard needs to get to the person in the water as fast as possible. You can 
run faster than you can swim. Therefore, the shortest time is NOT the shortest distance. 
You run more in the sand where your speed is faster, then turn and swim at a slower 

speed to the victim. Then, the time to get to your destination is the sum of the time 1t  in 

the sand, where you travel a distance 1d  at speed 1v , and the time 2t  in the water, 

where you travel a distance 2d  at speed 2v . From Fig. 6, 

2 2 2 2

1 21 2
1 2

1 2 1 2

( )d x y x yd d
t t t

v v v v

− + +
= + = + = +

. 

Now use 1 1/n c v=  and 2 2/n c v=  as given definitions. 

 

2 2 2 21 2
1 2( )

n n
t d x y x y

c c
= − + + +

 

To find the x that minimizes the time we set the derivative with respect to x to zero. 
 

1 2

2 2 2 2

1 2

1 2( )( 1) 1 2
0

2 2( )

n ndt d x x

dx c cd x y x y

− −
= + =

− + +  

1 2

2 2 2 2

1 2

( )
0

( )

n ndt d x x

dx c cd x y x y

−
= − + =

− + +  

 

1 2

2 2 2 2

1 2

( )

( )

n nd x x

c cd x y x y

−
=

− + +  

 

1 2
2 2 2 2

1 2

( )

( )

d x x
n n

d x y x y

−
=

− + +  

 

1 1 2 2sin sinn n =  

 
We have obtained the famous result! 
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B3. The Index of Refraction 
 

The parameter n  is called the index of refraction for a given medium and it is defined as 

c
n

v
=

, 

 

where c  is the speed of light in vacuum and v  is the speed of light in the medium. Light 

slows down when it goes through media. Below are some indexes of refraction. 
 
Table 1. Media and Index of Refraction. 
 

Medium Index of Refraction 

Vacuum 1 

Air 1 

Water 1.33 

Glass (Typical Crown Glass) 1.5 

Diamond 2.4 

As we have mentioned, the relation 1 1 2 2sin sinn n =  is today known as Snell’s Law 

but earlier, the Persian scientist Ibn Sahl (c. 940 – 1000) used it in his optics book in 
designing lenses in the 980s. Willebrord Snell (c. 1580 – 1626), also known as 
Willebrordus Snellius, gave a derivation in 1621, but it was not published. René Descartes 
(1596-1650) gave a derivation in 1637. So sometimes, the law is referred to as the Snell-
Descartes law, but Ibn Sahl should be in there too. 
 

Note that with 1 1 2 2sin sinn n = , if the index of refraction is greater, the angle is 

smaller and vice versa. Therefore, going from a “fast medium” where light travels faster 
and then enters a “slow medium” where light travels slower, the light bends towards the 
normal. See Fig. 7. Some light gets reflected at the interface, which is not shown in Fig. 7. 
 

 
 

Fig. 7. Light traveling from one medium to another. 
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But if you go from “slow” to “fast’ you can bend away from the normal so much that you 
skim the interface with an angle of 90° from the normal. The incident angle in this case is 
called the critical angle See the three cases in Fig. 8 where the middle one illustrates the 
critical angle and the last case at the right is total internal reflection. 
 

 
Fig. 8. The three basic cases in going from glass to air. 

 
Let’s solve for the critical angle when light is in water and air is the surrounding medium. 
Snell’s Law 
 

1 1 2 2sin sinn n =  

 
becomes 
 

sin sin90w c an n =       or     sin (1)w c an n = , 

 
and we find that the critical angle is 
 

1 1 1
sin sin 49

1.33

a
c

w

n

n
 − −= = = 
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Fig. 9. Total Internal Reflection, PHYS 101 Light and Visual Phenomena, Spring 2020 

See the short video at: https://youtu.be/8yGmql7pfr4 

For incident angles greater the critical angle, the light undergoes total internal reflection 
inside the water, as illustrated in Fig. 9. You can see a short video here: 
https://youtu.be/8yGmql7pfr4 
 
Fig. 10 below includes two sketches of total internal reflection, one for fiber optics and one 
for the water jet stream. 
 

 
 

Fig. 10. Total Internal Reflection in fiber optics and a jet of water. 
 
Total internal reflection makes fiber optics possible and the Internet! The fast speed of light 
also makes the Internet possible. Think about how physics here revolutionized the world 
with the Internet. The two main ingredients are optical: 
 

https://youtu.be/8yGmql7pfr4
https://youtu.be/8yGmql7pfr4
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1. Fiber optics and Total Internal Reflection. 
2. The Super Fast Speed of Light for quick world communication.  

 
So we have used the wave model to arrive at Snell’s Law. Then we used the rays of 
geometrical optics and Fermat’s Principle. So we have two derivations, one from each of 
two of the basic realms of optics: 
 

1. Geometrical Optics – light travels in straight lines. 
2. Physical Optics – light as waves (crests and troughs). 

 
The rows of soldiers are the crests of the wave, like a water wave. In between we can call 
the center of the gap between the rows as the bottoms of the troughs. Note that in physical 
optics you have a direction of travel – a ray! But in geometrical optics for our derivation 
using the principle of least time, there are no crests or waves. So you see, the wave model 
contains the ray concept. The directional ray is perpendicular to the crests. 
 
However, the Principle of Least Time allows the ray model of geometrical optics to make a 
connection to wave optics via its derivation of Snell’s Law. The Principle of Least Time is a 
very sophisticated approach to refraction. 
 
B4. Mirages 
 

 
 

Fig. 12. Road surface mirage. It appears that water is present. 
 
The common road surface water-mirage seen in Fig. 12. It is due to refraction that occurs 
with a gradual change in index of refraction. The index of refraction changes since the 
layers of air have different temperatures. The index of refraction is less for air at hotter 
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temperatures. Therefore, light going from a layer of cold to warmer air bends away from 
the normal as seen in Fig. 13. Total internal reflection is shown at the bottom of the path, 
which is incorrect. The ray diagram of geometrical optics is too limited here. 
 

 
 

Fig. 13. Simplified mirage model with incorrect total internal reflection at bottom. 
 
If the ray at the bottom is replaced with a wave crest, the bottom of the wave crest will 
travel faster than the top part of the crest, making the wave path bend upward. The 
observer at the left in Fig. 14 perceives an inverted image, which the brain processes as 
coming from a reflection of water midway between the observer and the tree. The water is 
the mirage. Since the image of the tree is locate underneath the real tree, the mirage is 
classified as an inferior mirage. 
 

 
Fig. 14. Inferior mirage caused by refraction. 

 
A simple model of three levels of air with different temperatures is shown in Fig. 15. The air 
temperature gets higher as you near the hot road surface below. Note that the first angle 
and the last one are related directly without the middle layer in the formula, i.e., 

1 1 3 3sin sinn n = . 
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Fig. 15. Model with three layers of air, air getting warmer towards the ground. 
 

So we only need the cold index of refraction at the upper level and the hot index of 
refraction near the road surface. Note that the angle of incidence near the hot road surface 

is a 90° angle as shown in Fig. 16. The relation 1 1 3 3sin sinn n =  with 1 coldn n=  at 

the top layer and 3 hotn n=  at the lowest level leads to cold hot hotsin sin90n n n =  = .  

 

In Fig. 16 let the incident angle at the observer’s height at the far left, where coldn n= , be 

 . Then remember that cold sinn   is a constant and will be equal to hot hotsin90n n = . 

 
Fig. 16. Refracted light path. The most change occurs near the hot road. 

 

The angle   in Fig. 16 is called the mirage angle. Note that 90 + =  . Therefore, 

substituting 90 = −  in cold hotsinn n =  leads to 

 

cold hotsin(90 )n n− =      and     cold hotcosn n = . 
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The simple result is 
hot

cold

cos
n

n
 =

. Since the mirage angle will be very small, we can 

expand the cosine:  

2

hot

cold

1
2

n

n


− =

, 

 

leading to 

2

hot

cold

1
2

n

n


= −

 and 

 

hot

cold

2(1 )
n

n
 = −

 

 
We would like to have a formula that brings in temperature. Two British researchers, a 
chemist and a priest, made a fascinating discovery about index of refraction. The chemist 
John Hall Gladstone and the Reverend Thomas Pelham Dale presented a paper in 1863 to 
the Royal Society of London on their empirical studies of index of refraction and density. 
They found that to a good approximation, the increase in index of refraction from n = 1 is 
proportional to the density of the medium. Their observation is known as the Gladstone-

Dale law and is expressed in terms of the density   as 

 

1 constn − =  . 

 
But the density of air can be related to the temperature through the ideal gas law 
 

PV nRT= . 

 

From the cool air height to the hot road surface, the atmospheric pressure P  is constant. 
Therefore,  

const
nRT

P
V

= = . 

The density of the air   is proportional to 
n P const

V RT T
= =  since atmopsheric weather 

pressure will be constant over our region near the ground. Therefore 
const

T
 = . 
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Combining 1 constn − =   and 

const

T
 =  gives  

 

const
1n

T
− =      and     ( 1) constn T− = . 

 

Returning to 
hot

cold

2(1 )
n

n
 = − , we can incorporate ( 1) constn T− = . First note that 

 

cold cold hot hot( 1) ( 1) constn T n T− = − = . 

 

Now solve for 
ho

cold

1 tn

n
− . The steps are below, where we abbreviate hot as h and cold as c. 

 

c c h h( 1) ( 1)n T n T− = −  

 

c c c h h hn T T n T T− = −  

 

h
c c h h

c c c

1 1n
T T T T

n n n
− = −

 

 

h
h c c h

c c c

1 1n
T T T T

n n n
= − +

 

 

c ch

c h c h c

1 1T Tn

n T n T n
= − +

 

 

c ch

c h h

1
1

c

T Tn

n T n T

 
= + − 

 
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c ch

c h h

1
1 1 1

c

T Tn

n T n T

 
− = − − − 

 
 

 

ch

c h

1
1 1 1

c

Tn

n n T

   
− = − −   

  
. 

 
Finally, 

 

ch

c h

1
2(1 ) 2 1 1

c

Tn

n n T


   
= − = − −   

  
. 

 
Typical ambient temperature on a hot summer day in North Carolina is 
 

Tc = 88 °F = 31 °C = 304 K. 
 
In contrast, the hot asphalt can be 
 

Th = 120 °F = 49 °C = 322 K. 
 

To get an estimate of the angle  , we can use for the index of refraction of air at Tc to be 

 
nc = 1.00026. 

 
Then, 
 

3c

h

1 1 304
2 1 1 2 1 1 5.39 10 rad

1.00026 322c

T

n T
 −       
= − − = − − =        

     
 

 

3 180
5.39 10 rad 0.31

 rad




− 
=   =  , a very small angle. 

 
You will be given a homework assignment where you investigate data I published recently 
applying these ideas driving on hot summer roads in North Carolina. 
 

Michael J. Ruiz, “Road Mirage Angle,” Physics Education 54, 065009 (November 
2019). pdf and Video Abstract 
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