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Normal Gravity. Prof. Ruiz (Doc), UNC-Asheville (1978-2021), DoctorPhys on YouTube. 
Chapter A. Syllabus. Prerequisites: Physics I, II. Calculus I, II, III. 
 
A1. Course Description. These notes and accompanying YouTube videos at DoctorPhys  are 
developed for ambitious students with at least one year of calculus-based physics and three 
semesters of calculus. The goal is to cover all the mathematical physics necessary to show all steps in 
deriving Somigliana’s formula for normal gravity. The course consists of Chapters labeled A to Z, as 
listed in the table below. During the journey we take many detours so you can develop your 
mathematical physics skills and master material related to normal gravity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Somigliana formula gives normal gravity at all surface points when the Earth is modeled as a 
rotating uniform ellipse of revolution. Normal means that the gravity force vector is the force 
component perpendicular to the surface of the Earth at the desired position. The rotation of the 
Earth is important in determining the effective gravity. The net gravity force vector does not point to 
the exact center of the Earth as it would for a non-rotating sphere. But normal gravity is the 
perpendicular force component that gives what a scale would read for your weight. 

A. Syllabus (This Chapter) 

B. Algebra and Trig (Review) 

C. Calculus (Review) 

D. Physics (Review) 

E. Infinite Series 
F. Taylor and Fourier Series 

G. Gravitation 

H. Conic Sections 

I. PI, Areas of Circles and Ellipses 

J. Ellipse Perimeter 

K. Ellipsoids 

L. Cartesian Coordinates 

M. Polar Coordinates 
N. Elliptic Coordinates I 

O. Elliptic Coordinates II 

P. Curvilinear Coordinates 

Q. Cylindrical Coordinates 

R. Spherical Coordinates 

S. Laplacian Applications 

T. Ellipsoidal Coordinates 

U. World Geodetic System 1984 (WGS 84) 

V. Geodetic Coordinates 

W. The Geopotential 

X. Legendre Polynomials 

Y. Legendre Functions (1st, 2nd Kind) 
Z. Normal Gravity 

https://www.doctorphys.com/
https://www.doctorphys.com/
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A2. Somigliana’s Formula for Normal Gravity. 
 

Carlo Somigliana (1860-1955) 
Source: Wikipedia (Public Domain) 
 
An exact formula for normal gravity for a rotating ellipsoid 
was first derived by Carlo Somigliana, who was an Italian 
mathematical physicist. 
 
He derived his gravity formula in 1929. When one uses an 
ideal ellipsoidal model to calculate gravity, we often we refer 
to gravity as theoretical gravity. 
 
The Somigliana formula is 
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  is gravity (m/s2), 

e  is gravity at the equator, p  is gravity at the poles, 

  is the angle where the normal from the surface meets the equatorial plane (see figure), 

a  is the semi-major axis (equatorial radius), and b  is the semi-minor axis (polar radius). 
 
I will show you later in detail how to transform among the various angles. The form of Somigliana’s 
formula is very nice for the following reasons. 
 

1) It is fairly easy to remember since the semi-major axis a  
goes with 

eg  (gravity at the equator) and the semi-minor 

axis b  is paired with pg  (gravity at the poles). 

 
2) The geodetic angle   is the latitude of geography used 

for our locations on Earth. 
 
3) The geodetic angle   is the one chosen by the World 

Geodetic System 1984 for theoretical gravity formulas. 
 

Note that the above ellipsoid is highly exaggerated. The actual shape of the Earth is very close to a 
sphere. We use   for theoretical gravity, where we consider the Earth as an ideal uniform oblate 

spheroid. The notation g  is reserved for the actual acceleration due to gravity, which takes into 

consideration the nonuniform density of the Earth. In Somigliana’s original formula, he used g  back 

in 1929. An average g  often used in physics is 
2

m
9.8 

s
g = . Some like to let 

e a =  and p b = . 
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A3. Ladislav Hora. Much of my inspiration for this course comes from the following publication. 
 

Hora, Ladislav (1971). “On the Somigliana’s formula,” Aplikace matematiky, 16, 98-108. 
Link to pdf at the Czech Digital Mathematics Library. Here is a link to their main page. 

 
In this paper, Hora gives a most elegant derivation of the Somigliana formula. This derivation will be 
the climax of our course in the last chapter. His method is similar to that found in the following excel-
lent publication that appeared about 10 years before his paper. 
 

Molodenskii, Mikhail S., Eremeev, Vladimir F., and Yurkina, Mariya I. (1962). Methods for Study of 
the External Gravitational Field and Figure of the Earth. Jerusalem: Israel Program for Scientific 
Translations. 

 
The author Ladislav Hora (1932-2013) was born on August 9, 1932 and died on March 19, 2013. He 
was a geodesist, specializing in higher geodesy issues and field work. Source: Hora, Ladislav (1932-
2013). 
 
Hora was affiliated with the Czech Republic and inducted as a fellow of the International Association 
of Geodesy (IAG). See the Springer handbook Drewes, Hermann, Kuglitsch, Franz, Adám, József, and 
Rózsa, Szabolcs (2016). “The Geodesist’s Handbook 2016,” Journal of Geodesy 90, 907–1205. 
Springer, on behalf of the International Association of Geodesy (IAG). From the directory of the 
registered participants in the XXIII International Union of Geodesy and Geophysics (IUGG) General 
Assembly in Sapporo in 2003, Hora’s entry is “Hora, L., Dr., F, Czech. PolyTech. Univ., Takurova 7, 166 
29 Praha 6-Dejvice. Czech Republic.” 
  

https://dml.cz/bitstream/handle/10338.dmlcz/103334/AplMat_16-1971-2_4.pdf
https://dml.cz/handle/10338.dmlcz/103334
https://dml.cz/handle/10338.dmlcz/103334
https://arl.cbvk.cz/arl-cbvk/cs/detail-cbvk_us_auth-m0061010-Hora-Ladislav-19322013/H
https://arl.cbvk.cz/arl-cbvk/cs/detail-cbvk_us_auth-m0061010-Hora-Ladislav-19322013/H
https://link.springer.com/article/10.1007/s00190-016-0948-z
https://link.springer.com/article/10.1007/s00190-016-0948-z
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A4. Course Intent. My goal in many of my courses is to introduce students with a full year of calculus-
based physics and three semesters of calculus to advanced material, applying mathematical physics. 
In this case, we are going to derive the Somigliana’s formula for normal gravity, an important formula 
in the field of geodesy. The National Oceanic and Atmospheric Administration (NOAA) gives the 
following definition for geodesy. 
 

Geodesy is the science of accurately measuring and understanding the Earth's geometric 
shape, orientation in space, and gravity field. (NOAA) 

 
Our journey starts off with a review of high school trigonometry. But we will be at the advanced 
undergraduate level and graduate level in many sections. Here is why. During the last semester of my 
four-year physics major, I took a one-semester quantum mechanics course. We solved the 

Schrödinger equation for the hydrogen atom, which included the Laplacian 2V  in spherical 
coordinates. I will explain what the Laplacian is later. In our course, we solve the Laplacian in oblate 
ellipsoidal coordinates, which is definitely much harder than spherical coordinates. 
 

You need to be aware that in geodesy, you are most likely to see   for the Laplacian instead of 2 . 

Though I usually try to stick with notation in the field I am discussing, I will use 2  in this case, the 

preferred notation in theoretical physics. One reason that I am keeping with 2  is that I use   for 
change very often in my courses, an example being 

2 1.x x x = −  But, as a mathematics professor 

once told me, notation has a strong subjective component and that’s why in many math books the 
notation for the text is given on the inner sides of the front and back covers for the book. 
 
I have seen papers published in atmospheric science where a whole page is devoted to listing all the 
symbols used in the paper and what they stand for. It would be nice if everyone agreed on a 
standard notation for everything, but that ideal is not reality. Therefore, be prepared when you 
consult other sources. You will find the definitions of angles such as   and   meaning the opposite 

of each other, even when two authors are discussing the same problem. 
 
What I particularly like about the derivation of Somigliana’s formula is that so many areas of 
mathematical physics are needed. In teaching, we often use textbooks and papers written many 
years after the initial discoveries. The reason is that decades after a discovery, the methods of 
derivation become much more accessible to students, both in notation and approach. I have 
consulted many books and references on our subject of geodesy. I have encountered, in important 
classical texts where ellipsoidal coordinates are introduced, figures representing three dimensions 
that I have found extremely difficult to grasp. My own approach, is inspired by the already 
mentioned excellent paper by Hora (1971) and text by Molodenskii, Eremeev, and Yurkina (1962). 
The traditional brain-twisting ellipsoidal diagrams are replaced in this approach with clear 
mathematical steps. I also have two full chapters on elliptic coordinates before we rotate the ellipse 
about the z-axis to delve into ellipsoidal coordinates in 3D. 
 
My intent is to show all steps, even deriving the Laplacian in oblate ellipsoidal coordinates, as well as 
showing where the Legendre polynomials come from by solving Legendre’s differential equation with 

https://oceanservice.noaa.gov/facts/geodesy.html
https://oceanservice.noaa.gov/facts/geodesy.html
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a power series. Following through this course will enable you to use so many powerful tools common 
in mathematical physics, which I often also refer to as theoretical physics. As a physicist, I am 
relatively new to the field of geodesy and I was surprised that my background in mathematical 
physics prepared me well for entering this new field of study. I hope your study is as rewarding an 
experience as it was for me. 
 
Since our course includes so much background material, it serves as a mathematical toolbox. 
 

 
 

Table of Hand Tools. Courtesy Jonathan Cutrer, flickr. 
 
 
A5. Geodesy and Related Fields. My interest in gravity on the Earth’s surface and in the troposphere 
arose from my interest in studying temperature lapse rates in atmospheric science. Therefore, I think 
of these notes as a spin-off of my work in meteorology. However, I would like my treatment here to 
be self-contained with a unified aim: to derive the Somigliana formula including steps that are often 
left to the reader in textbooks. The Somigliana formula gives gravity at the Earth’s surface anywhere 
on the ideal Earth model. 

https://www.flickr.com/photos/joncutrer/
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The subject of geodesy focuses on describing the shape of the Earth in terms of coordinate systems 
(geometric geodesy) and its gravitational field at different points on the Earth (physical geodesy). 
Geodesy is important for surveying and also for the global-positioning-satellite system. 
 

Surveyors on the Author’s Driveway 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Photo by Author (September 29, 2017) 
 

Global-Positioning Satellite (GPS) System 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Credit NOAA  
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A6. Course Philosophy. The philosophical approach I am taking here is one where we derive 
everything from first principles. There are two main advantages for spending the time with such 
detail. 
 

a. Profound Understanding. You acquire deep understanding when you see where everything 
comes from. You are empowered to do your own research. 

b. Powerful Mathematical Techniques. You learn mathematical techniques that are common 
across the physical sciences and engineering. 

 
I am amazed that all the fundamental mathematics and physics required to understand geodesy I 
have encountered in my studies of physics. This observation also extends to fields in engineering. 
Therefore, by deriving everything, we acquire a foundation that is applicable well beyond geodesy. An 
analogy here would be learning how to use generic tools in a toolbox. You use the same basic tools to 
fix anything. By working through a derivation, you are fixing something with your tools. When, you 
skip the derivations, it is like having someone else repair things for you. 
 
When one takes a course in mathematical physics, one learns about these basic tools, but it can get 
tiring since there is no single overall specific application in mind. In contrast, our course has a specific 
goal, which then serves as an incentive. However, we do not cover all the tools found in a 
comprehensive mathematical methods course. We focus on the tools required for the task at hand – 
and these are many. It is still advisable to consider taking a general course on mathematical methods. 
Such courses go by several names, including mathematical physics, mathematical methods for 
engineers, theoretical physics, etc. 
 
An important ingredient in the approach taken in such courses of applied mathematics, and the one 
we take here, is that we strike a balance between formal derivation and application. On average, our 
derivations are informal rather than rigorous mathematical proofs. However, some derivations are 
quite rigorous. In the next section I will address the difference with a specific example. 
 

The Blue Marble 
 

 
 
 
 
 
 
 
 
 
 
 

 
Courtesy NASA via Wikipedia 

https://en.wikipedia.org/wiki/Earth
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A7. Derivations. Derivations encountered in physics courses often do not please mathematicians. 
Before illustrating by example an informal proof and rigorous one, here a some general examples. 
 

• The Dirac Delta Function. Theoretical physicist Paul Dirac (1902-1984) defined a function that 
is zero for all x  and infinite at 0x = . When I first taught quantum mechanics and introduced 
Dirac’s delta function, a double major in math and physics became quite upset. So, I 
researched the topic and then approached the math professor who was discussing this 
problem with my student behind my back. I showed the math professor a mathematical 
physics text that started with Gaussian functions, bell-shaped curves with the same area. 
When these became taller and narrower approaching what Dirac had in mind, the 
mathematician was happy. We could take derivatives of the Gaussians. Those functions were 
continuous. All was well. But physicists do not take the time to treat the Dirac delta function 
this way. 

• Quantum Mechanics. When quantum mechanics was developed in the 1920s you might say 
physicist were cavalier in their use of math and infinite numbers of wavefunctions to describe 
general states of a bound particle. The great mathematician David Hilbert  (1862-1943), 
working with physicists and other mathematicians, paved the way for making quantum 
mechanics stand on firm mathematical ground. The infinite-dimensional space in which the 
solutions can be expressed is called Hilbert space in his honor. 

• Green’s Functions in Electrodynamics. When I was an undergraduate, I was studying a 
graduate text in electrodynamics for some material related to my undergraduate research 
project. Classical Electrodynamics by John David Jackson is a great text that has been used in 
graduate school for decades. It is considered a classic and rigorous text (for physicists, as you 
will see below). One day, I went to a mathematician to ask for some insight that could possibly 
help me and my physics research advisor in our work. The math professor looked at the page I 
showed him. He started to look disgusted. Then he turned a few pages, shaking his head and 
stated: “This is not mathematics.” So, you get my point. What is good enough for a physicist is 
not always good enough for a mathematician. 

 
I would like to give a specific simple example of what I mean by pleasing a physicist and pleasing a 
mathematician. I will refer to what pleases the physicist as “the informal derivation” and what 
pleases the mathematician will be called “the rigorous mathematical proof.” The example I present 
below is to find a formula for the sum of the first n  positive odd integers. 
 

1 3 5 7 ... 2 1nS n= + + + −           1,2,3...n =  

 
Before proceeding, we verify that 2 1n −  is the nth positive odd integer for the first few cases. 
 

n  1  2  3  4  5  6  7  
2 1n −  2 1 1 1 − =  2 2 1 3 − =  2 3 1 5 − =  2 4 1 7 − =  2 5 1 9 − =  2 6 1 11 − =  2 7 1 13 − =  

 

We would like to derive the formula 21 3 5 7 ... 2 1nS n n= + + + − = . 
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a. Informal Derivation. We derive our formula for 1 3 5 7 ... 2 1nS n= + + + −  by constructing a box of 

numbers as shown below. 
Focus on the four following areas: 

 
    i) the 1 x 1 square with 1 little square, 
   ii) the 2 x 2 square with 4 little squares, 
  iii) the 3 x 3 square with 9 little squares, 
  iv) the 4 x 4 square with 16 little squares. 
 
Notice how each sum of odd integers matches the area 
of its corresponding square. We infer from our 

observations that the formula is 
 

21 3 5 7 ... 2 1nS n n= + + + − = . 

 
b. Formal Rigorous Proof. We will employ proof by induction. We assume the formula is true for the 
nth case and then show it is true for the (n + 1)th case. We then show it is true for the first case, which 
completes the rigorous proof that the formula is true for all cases. 
 
i) Assume  

21 3 5 7 ... 2 1nS n n= + + + − = . 

 

Then we proceed with 1 1 3 5 7 ... 2 1 2 1nS n n+ = + + + − + +  and see if we get 2( 1)n + . 

 

1 1 3 5 7 ... 2 1 2 1nS n n+ = + + + − + +      =>     ( ) ( )1 1 3 5 7... 2 1 2 1nS n n+ = + + + − + +  

 

Since we are assuming 21 3 5 7 ... 2 1nS n n= + + + − = , we have 

 

( )2

1 2 1nS n n+ = + + , which we can write as 

 
2

1 ( 1)nS n+ = + . 

 

ii) Demonstrate the Formula 21 3 5 7 ... 2 1nS n n= + + + − =  is true for the First Case. 

 

For 1n = , the sum of the first odd integer is 1 1S = . 

 

The formula 2

nS n=  gives 2

1 1 1S = = . 

 

Therefore, 21 3 5 7 ... 2 1nS n n= + + + − =  is true for all cases from 1 to infinity! 
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Though the rigorous proof is the gold standard for mathematicians, the informal derivation presented 
earlier is perfectly fine for an engineer or physicist. 
 
However, many of our derivations will be very similar to those found in math books and will please 
even strict mathematicians. But in other instances, mathematicians will want more. We will not 
distinguish between the two in our derivations. I appreciate having taken three semesters of calculus 
with mathematicians in college and seeing rigorous proofs. Then, later, applying math in physics, I 
began to also appreciate the “informal” derivations of physicists. If we insisted on formal derivations 
for everything, we would not have time to do the physics. We would be exhausted. 
 
Talking about exhaustion, I must warn you that theoretical physics often includes extremely lengthy 
calculations. If you like doing a 1000-piece jigsaw puzzle, you will probably look forward to 
calculations and the elation when you complete them. This course will give you great strength in 
mathematical methods. On the other hand, if you prefer to be given a formula and use it, then, this 
course is not for you. Since I have already given you Somigliana’s formula, we are finished. You have 
the formula. And there is nothing wrong with doing this. I acquired respect for looking up formulas 
when I was an Adjunct Professor of Mechanical Engineering at North Carolina State University in the 
1980s. If you are doing engineering, you need to look up formulas and data in numerical tables to use 
them in your challenging engineering applications. There is no time to derive everything. So, it 
depends on your goals. If you want to become a grandmaster in understanding the fundamentals of 
much applied mathematics and physics, then this course is for you. 
 
I often start my courses with some review material from introductory courses. When we review 
ellipses, we will actually be going back to high school algebra. In other cases, we will review material 
from introductory physics and calculus. From this foundation, we will proceed to material treated in 
upper-level science courses. Finally, we will reach material at the level of graduate school. I hope you 
enjoy the journey. 
 
Michael Ruiz, Ph.D. 
Asheville, North Carolina, USA 
August 31, 2024 
 
P.S. (December 23, 2024). Math Physics helped me psychologically deal with Hurricane Helene. He-
lene hit my hometown the morning of September 27, 2024. We heard trees falling throughout the 
night. Trees hit the house, my fence in many places, our backyard forest was wiped out, electricity 
went out, and water went out. Life changed for us drastically. Days were spent with neighbors clear-
ing our own roads and driveways. But later we had to pay much to have professionals do tree re-
moval. We often went with a neighbor who had a truck to get flushing water from a nearby stream, 
which later was run through a purification system for us as drinkable water. We car pooled in the 
early days to the one grocery store open to get food and ice to preserve the food for two days. Elec-
tricity returned in two weeks but tree removers tore up Internet lines. Water came back in weeks and 
eventually became drinkable. House repairs are still underway at this time (December 2024). I discov-
ered that I could take great solace in working on this text with pen and paper during the daylight 
hours when taking breaks from my new daily chores. I learned that mathematical physics can be 
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strong mental medicine. If you are interested in Helene videos, as of this writing, I have hours of 
video spanning weeks, which I plan to post at my personal YouTube channel: DrMichaelRuiz. If you 
are interested, see the Playlist labeled “Helene” at that YouTube channel. 
 

Author’s Backyard After Hurricane Helene (New Deck in Foreground Not Completed) 
 

 
 

Photo by Author, November 23, 2024, Asheville, North Carolina, USA. 
 

 
A8. Topics. Below is a detailed syllabus. 
 
A. Syllabus 

1. Course Description 
2. Hora Ladislav 
3. Carlo Somigliana 
4. Course Intent 
5. Geodesy and Related Fields 
6. Course Philosophy 

https://www.youtube.com/user/mjtruiz
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7. Informal Derivation vs Formal Mathematical Proof 
a. Informal Derivation 
b. Formal Rigorous Proof 

8. Topics 
 
B. Algebra and Trig 
 1. Linear Equation 
 2. Complementary Angles 
 3. Perpendicular Lines 
 4. Binomials 
 5. Quadratic Equation 
   6. Factorials 

7. The Binomial Expansion 
8. Some Trig Identities 
9. The Pythagorean Theorem 
10. The Law of Cosines 
11. The Law of Sines 

  
C. Calculus 
 1. Common Derivatives 
  a. The Chain Rule 
  b. The Product Rule 
  c. The Quotient Rule 

2. Common Integrals 
 a. Substitution 

 b. Integrating 2cos   or 2sin   over an Interval a Multiple of / 2  
  c. Integration by Parts 
 3. The Imaginary Number i 
  a. The Complex Plane 
  b. Euler’s Formula 
  c. Euler’s Identity 
  d. Cosine and Sine in Terms of Exponentials 
 4. The Hyperbolic Trig Functions 
 5. Placeholders for Integration 
  a. Integration Variable 
 b. Integration Limit 
 

6. Derivatives and Change of Variables 
 a. Substitution 
 b. New Differential Equation 

 7. Reduction Formula for Sine Integrals 
8. Taylor Series 

  a. Maclaurin Series 
9. Common Maclaurin Series 
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  a. The Exponential 
  b. The Cosine 
  c. The Sine 
 10. The Logarithmic Function 

 11. The Common Function 
1

1 x+
 

 12. Differential Equations 
 13. Parity 
 
D. Physics 
 1. Kinematics 
  a. Translational Motion 
  b. Circular Motion 
 2. Dynamics and Newton’s Three Laws 
 3. Units 
 4. Work and Kinetic Energy 
  a. Work 
  b. Kinetic Energy 
  c. Work-Energy Theorem 
  d. Potential Energy 
  e. The Potential Energy and the Force 
  f. The Potential 
 5. Centripetal and Centrifugal Force 
  a. Centripetal Force 
  b. The Fictitious Centrifugal Force 
 6. Weight at the Poles and Equator 
  a. Weight at the North or South Pole 
  b. Weight at the Equator 
 7. Newton’s Law of Universal Gravitation 
  a. The Apple 
  b. The Moon 
 8. Kepler’s Third Law 
 9. Kepler’s Third Law Constant 
 
E. Infinite Series 
 
 1. The Geometric Series 
 2. The Direct Comparison Test 
  a. The Harmonic Series 
 3. The Alternating Series Test (Leibniz’s Test) 
 4. The Absolute Convergence Test 
 5. The Ratio Test 
 6. The Method of Frobenius 
  a. The Exponential 
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 7.  The Method of Frobenius – Cosines and Sines 
 8. Euler’s Formula Rederived 
 
F. Fourier Series 
 1. Fourier’s Theorem 
 2. Orthogonal Functions 
 3. Fourier Series 
 4. The Square Wave 

5. The Wilbraham-Gibbs Phenomenon 
 6. Orthogonality Revisited 
 
G. Gravitation 

1. Outside a Spherical Mass 
 2. Inside a Spherical Mass 
 3. Acceleration on Earth Due to Gravity 

4. The Gravitational Potential Energy 
 a. The Potential Energy and the Force 
 b. The Potential 
5. The Gradient 
6. Poisson’s Equation 

 
H. Conic Sections 
 1. The Circle 
 2. The Ellipse 
  a. Method 1. Parametrization 
  b. Method 2. Thumbtacks and String 
  c. Method 3. Slicing a Cone 
 3. The Hyperbola 
 4. The Parabola 
 5. The Conic Sections and Eccentricity 
  a. Method 1. The Long Way: Good Mathematical Techniques to Learn 
  b. Method 2. The Short Way: Clever Techniques to Learn 
 
I. PI and Areas of Circles and Ellipses 
 0. Introduction 
 1. PI 
 2. Archimedes and Polygons 

3. Series Formulas for PI 
 4. The Circle and Calculus 
  a. Equation for a Circle 
  b. The Circumference 
  c. The Area 
 5. The Area of an Ellipse 
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J. Ellipse Perimeter 
 1. The Elliptic Integral 
 2. The Series Expansion of the Integrand 
 3. An Infinite Series of Integrals 
 4. A Product of Definite Integrals with Sine Functions 

5. Putting it All Together 
 6. Graph and Extreme Cases 
 
K. Ellipsoids 
 1. The Equation for an Ellipsoid 
  a. Quick Review of Ellipses 
  b. The Ellipsoid 
 2. The Surface Area of an Oblate Spheroid 
 3. The Volume of an Oblate Spheroid 
 
L. Cartesian Coordinates 
 0. Guiding Principles for Constructing Coordinate Systems 
  a. Three Guiding Principles 
   i. Orthogonal Grid Lines 
   ii. Assigning Coordinate Values 
   iii. Orthogonal Unit Basis Vectors 
  b. Three Useful Concepts 
   i. The Line Element 
   ii. The Metric 
   iii. Scale Factors and Differential Area 
  c. Three Differential Operators 
   i. The Gradient 
   ii. The Divergence 
   iii. The Laplacian 

1. Applying the Guiding Principles 
  a. Orthogonal Grid Lines 
  b. Assigning Coordinate Values 
  c. Orthogonal Unit Basis Vectors 
 2. Cartesian Useful Concepts 
  a. The Line Element 
  b. The Metric 
  c. Orthogonal Unit Basis Vectors 
 3. Useful Operators 
  a. The Gradient 
  b. The Divergence 
  c. The Laplacian 
 4. The Diffusion and Heat Equations 
 5. The Laplacian and the Heat Equation 
  a. Heat Equation in 2D 
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  b. Zero Term? 
  c. Separation of Variables 
  d. Boundary Conditions 
  e. Solution 
 6. Generalizing to Three Dimensions 
  a. The Coordinates 
  b. The Unit Vectors 
  c. The Metric 
  d. The Operators 
 7. Simple Heat Equation in 3D 
 
M. Polar Coordinates 
 1. Polar Coordinates 
  a. Orthogonal Grid Lines 
  b. Assigning Coordinate Values 
  c. Orthogonal Unit Basis Vectors 

2. Useful Concepts 
  a. The Line Element 
  b. The Metric 
  c. Scale Factors and Differential Area 
 3. The Gradient 
  a. The Insightful Way 
  b. The Tedious Way 
 4. The Divergence 
 5. The Laplacian 
 6. The Laplacian and the Heat Equation 
 
N. Elliptic Coordinates I 
 1. Orthogonal Grid Lines 
 2. Assigning Elliptic Coordinate Values Part I 
 3. Assigning Elliptic Coordinate Values Part II 
 4. Elliptic Coordinates to Cartesian Coordinates 
 5. Cartesian Coordinates to Elliptic Coordinates 
 
O. Elliptic Coordinates II 

1. Orthogonal Unit Basis Vectors 
2. Cartesian Unit Vectors in Terms of Elliptic Unit Vectors 
3. Useful Concepts 
 a. The Line Element 
 b. The Metric 
 c. Scale Factors and Differential Area 
4. Three Operators in Elliptic Coordinates 
5. The Laplacian and the Heat Equation 
6. Interpreting Elliptic Coordinates 
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7. An Elegant Way to Obtain Elliptic Coordinates 
 

P. Curvilinear Coordinates 
 1. Introducing Curvilinear Coordinates 
  a. Cartesian Coordinates 
   i. The Gradient 
   ii. The Divergence 
   iii. The Laplacian 

b. Cylindrical Coordinates 
c. Spherical Coordinates 
d. Curvilinear Coordinates 

  i. Square of the Differential Line Element 
  ii. Differential Volume Element 
2. The Gradient in Curvilinear Coordinates 
3. The Divergence in Curvilinear Coordinates 
4. The Laplacian in Curvilinear Coordinates 
 a. Cartesian 
 b. Cylindrical 
 c. Spherical 
5. The Curl in Curvilinear Coordinates 
 

Q. Cylindrical Coordinates 
 1. Cylindrical Coordinates 
  a. The Coordinates 
  b. The Unit Vectors 
  c. The Metric 
  d. Differential Volume 
  e. Scale Factors 
 2. The Gradient 

3. The Divergence 
4. The Laplacian 
5. The Laplacian and the Heat Equation 
6. The Volume of a Cone 

 
R. Spherical Coordinates 

1. The Coordinates 
2. The Unit Vectors 
 a. Unit Vector for r 

 b. Unit Vector for  

 c. Unit Vector for  
3. The Metric 
4. The Gradient 
5. The Divergence 
6. The Laplacian 
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7. The Brute-Force Approach (OPTIONAL) 
 

S. Laplacian Applications in Spherical Coordinates 
1. Review of Spherical Coordinates 
2. Poisson’s Equation and Boundary Conditions 
 a. Outside a Spherical Mass 
 b. Inside a Spherical Mass 
 c. Boundary Conditions 
3. Steady-State Heat Equation in Spherical Coordinates 

4. Poisson’s Equation where  = (r) 
 a. The Force 
 b. The Potential 
 c. Poisson’s Equation 
 

T. Oblate Spheroidal Coordinates (Ellipsoidal Coordinates) 
1. Elliptical Coordinates to Cartesian Coordinates – Still Another Way 
2. Ellipsoidal Coordinates 
3. Ellipsoidal Unit Vectors 

 a. Normalizing   

 b. Normalizing   

 a. Normalizing   
4. The Metric and Scale Factors 
5. The Volume Element 
6. The Laplacian in Ellipsoidal Coordinates 
 

U. World Geodetic System 1984 (WGS 84) 
1. The Solar Day and Sidereal Day 
2. The Radius of the Earth 
 a. Ellipses 
 b. Ellipsoids 
3. WGS 84 
 a. Semi-major Axis (a) 
 b. Flattening (f) 
 c. Semi-minor Axis (b) 

d. Angular Velocity of the Earth ().  
 e. The Gravitational Constant times the Mass of the Earth (GM) 
 f. Gravity at the Poles (gp) 
4. The Eccentricity of the Earth 

5. The Geocentric Radius R as a Function of Geocentric Latitude  

6. The Geocentric Radius R as a Function of Geodetic Latitude  

7. Plotting the Geocentric Radius as a Function of Geocentric Latitude  

8. An Alternative Form for the Geocentric Radius R as a Function of Geocentric Latitude  

9. A Simpler Formula for the Geocentric Radius R as a Function of Geocentric Latitude  
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V. Geodetic Coordinates 
1. Geodetic Latitude and Longitude 
2. Geodetic Coordinates 
3. Geodetic and Cartesian Coordinates x and y 
4. Geodetic and Cartesian Coordinate z 
5. Geodetic ( , , )N   and Cartesian Coordinates ( , , )x y z  

6. Geodetic Coordinates ( , , )h  , Cartesian Coordinates ( , , )x y z , and Orthogonality 

7. The Differentials dx, dy, and dz 
a. dz 
b. dx 
c. dy 

8. The Metric and Scale Factors 

a. The Group 2d  

b. The Group 2d  

c. The Group 2dh  
9. Radius of Curvature in the Meridian 
10. Three Important Radii 

 
W. The Potential 
 1. Gravitational Potential 
  a. Gravitation 
  b. Potential Due to Rotation 
 2. Poisson’s Equation 
 3. Hora’s Coordinates for the Oblate Spheroid 
 4. The Plan 

 
X. Legendre Polynomials 
 1. Why the Legendre Differential Equation is Important for Us 
 2. The Legendre Differential Equation 
 3. Power Series Solution for the Legendre Differential Equation 
  a. Step 1. "Series Plug In."  

b. Step 2. "Fix the Exponents."  
c. Step 3. “The Arbitrary Trick.”  
d. Step 4. “The Recurrence Relation.”  

 4. Conditions for Convergence 
 5. The Legendre Polynomials 

a. The Zeroth Legendre Polynomial ( 0n = ) 
b.  The First Legendre Polynomial  
c. The Second Legendre Polynomial ( 2n = ) 
d. The Third Legendre Polynomial ( 3n = ) 
e. The Fourth Legendre Polynomial ( 4n = )  
f. The Fifth Legendre Polynomial ( 5n = ) 
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g. The Sixth Legendre Polynomial ( 6n = ) 
 
Y. Legendre Functions of the 1st and 2nd Kind 

1. Legendre Functions of the 1st Kind 
 a. The Even Series 
 b. The Odd Series 
 c. Even Legendre Polynomials 
 d. Odd Legendre Polynomials 
2. Legendre Functions of the 2nd Kind 
 

Z. Normal Gravity 
1. Ellipsoidal Orthonormal Coordinates 
2. Ellipsoidal Scale Factors 
3. The Laplacian in Ellipsoidal Coordinates 
4. Separation of Variables 
5. The “u” Differential Equation 
6. The “w” Differential Equation 
7. The Boundary Conditions 
8. Normal Gravity 
9. Somigliana’s Original Form 
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