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General Relativity 
Prof. Ruiz, UNC Asheville 
Chapter GR-2. The Metric Tensor 
 

GR2-1. The Differential Line Element in Cartesian and Polar 
Coordinates. You may have heard that general relativity deals with curved 

spacetime. In this chapter we will study flat and curved two-dimensional surfaces as we 
categorize the information needed to calculate line elements. The result will be a nice 
compact form known as the metric tensor. I know you are anxious to get to tensors, but 
our slow approach below will give you much insight. 
 

The distance between two points, where the sides are orthogonal, is given by the 
Pythagorean formula. 

In Cartesian coordinates, the square of the 
differential line element is 
 

2 2 2ds dx dy  . 

 
If we use polar coordinates instead, we 
can write 
 

2 2 2 2ds dr r d  , 

 
as we know from the previous chapter or 
referring to the diagram at the left. 
 
Both of these surfaces are flat. Eventually, 
we will want a test that we can do to 
determine whether a space is flat or not. 
 

GR2-2. Arc Length. Before considering curved two dimensional surfaces, let’s look 

at curvature in one dimension. This section will be a review of things you covered in 
differential calculus. 

First use deltas instead of differentials to 
play it safe. We can write 
 

2 2 2s x y     and 

 

2
2 2

2
(1 )

y
s x

x


   


. 
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Then, eventually taking the limit as 0x  , we have 
 

2 22
2 2 2 2

2
(1 ) (1 ) (1 )

y y dy
s x x dx

x x dx

    
               

, i.e., 

 
 

2 2

2 2 2 2

0 0
lim lim(1 ) (1 )
x x

y dy
ds s x dx

x dx   

   
            

 

 
 

With the usual shorthand notation for the derivative, '
dy

y
dx

 , we obtain 

 

2 2 2(1 ' )ds y dx     and   
2(1 ' )ds y dx  . 

 
The arc length of a function y(x) from point 1 to 2 is provided by 
 

2

1

2

2

1

(1 ' )

x

x

s ds y dx     

 
We can call this the formula for arc length. 

 
 

Homework HW-10. The Circumference of a Circle. The equation for a circle of radius 

R  and center (0,0)  is given by 

  
2 2 2R x y  . 

Use the arc length formula to show that the arc length in the first quadrant is 
2

R


, 

which means the circumference is 4 2
2

R R


 . You might consider the trig 

substitution cosx R   when doing your integral. 
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GR2-3. The Curvature of a Line. Curvature is a measure of the change in 

direction as one proceeds along a given curve.  

Think of slope as 

rise y

run x





 in the 

limit as x  approaches zero. So the 
slope is given by the first derivative: 
 

0
' lim tan

x

y dy
y

x dx


 


  


. 

 
When there is a change in slope, there 

is curvature. Therefore, we expect the curvature to depend on the second derivative, 
which gives us a measure of the change in slope. 
 

2

20

'
'' lim

x

y d y change in slope
y

x dx run 


  


. 

 

However, the curvature is not defined simply as ''y  and there is good reason for 

this, which will be explained in this chapter. Instead, the curvature is defined in terms of 

the change in angle   relative a step along the arc length. 

 

0
lim
s

d
K

s ds

 

 


 

  

 
We take the absolute value so that a curve bending up or down by the same degree has 
the same curvature. 
 

For calculational purposes, it is easier to take derivatives of y  with respect to x  

rather than derivatives of   with respect to s . So we use the chain rule to lead us to 

an equivalent expression for K . 
 

d d dx
K

ds dx ds

 
 
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Note from the above figure that tan
dy

dx
  . We have the following three formulas to 

work with. 

2(1 ' )ds y dx         tan
dy

dx
         

d d dx
K

ds dx ds

 
 

 

 
First note that  
 

2(1 ' )
ds

y
dx

       and the flip     2

1

(1 ' )

dx

ds y



. 

 

The last formula can be substituted in the K  formula: 
 

2

1

(1 ' )

d d dx d
K

ds dx ds dx y

  
  


. 

 

We can find 

d

dx


 from 

1tan
dy

dx
  . Let 

dy
u

dx
  so 

1

2

tan 1

1

d u

dx u






. 

Then, 

2 2

1 ' 1
''

1 ' 1 '

d dy
y

dx y dx y


 

  . 

 
Note the appearance of the second derivative as we expected. Putting all this together, 
we find 
 

22 2

1 1 1
''

1 '(1 ' ) (1 ' )

d
K y

dx yy y


 

 
, leading to the compact result 

 

2 3/2

''

(1 ' )

y
K

y


 . 
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Our definition for the curvature, 2 3/2

''

(1 ' )

y
K

y


 , has interesting geometric 

meaning. Consider the curve ( )y f x  with a particular point ( , )p px y  singled out 

and a circle centered at ( , )a b  that touches the curve tangentially at the designated 

point ( , )p px y . 

Two important properties of the circle 
are: 
 
a) The circle touches the curve at 

point ( , )p px y . Therefore, 

 
2 2 2( ) ( )p px a y b R    . 

 
b) The circle is tangent at point 

( , )p px y . Thus, the slope of the 

curve ' '( )y f x  matches the slope of the circle at that point. 

' '( )
p

p p

p

x a
y f x

y b

 
    

  
. 

 
Do you recognize the trick from high-school algebra? 

 
Here is what we did. The slope from the center of the circle up the radius line shown is 

p

p

y b
m

a x

 
   

  
, with a negative sign since the line is a “sliding board.” 

The slope of the curve at p  is perpendicular. The old high-school trick is that the 

product of perpendicular slopes equals 1 . Therefore, for the slope of the curve at 

point p , which we will call pm , must satisfy 1pm m   . This equation leads us to 

p

p

p

x a
m

y b

 
   

  
. 
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Homework HW-11. The Slope of a Circle. Show by implicit differentiation of 

2 2 2( ) ( )x a y b R     that you arrive at 

dy x a

dx y b

 
   

 
 for the circle, 

leading to our same result above: 

p

p

p p

x ady
m

dx y b

 
    

  
. 

  
******************** 

 
But many circles with different radii satisfy our two criteria: 

 
2 2 2( ) ( )p px a y b R    , 

 

' '( )
p

p p

p

x a
y f x

y b

 
    

  
. 

 

In order to find the circle that fits the best at point ( , )p px y  we demand that the 

changes in slopes of ( )y f x  and the circle also agree at our point. This gives us 

the third restriction for the circle. The second derivative for the circle is found taking the 

derivative of your HW-11 homework assignment result 

dy x a

dx y b

 
   

 
. Proceeding 

to take this derivative, we obtain 
 

2

2 2

1 ( )
'

( )

d y d x a x a
y

dx dx y b y b y b

  
     

   
. 

 

Using 
'

x a
y

y b

 
   

 
, we note 

2

2

1 '
'

( )

d y y
y

dx y b y b
  

  , which leads to 

21 '
''

y
y

y b

 
   

 
. 

At our designated point this second derivative must match '' ''( )y f x . 
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We have three unknowns for our circle: a , b , and R . But we have three 
equations. These equations are listed below where it is understood that everything is to 

be applied at point ( , )p px y . 

 
2 2 2( ) ( )x a y b R     

 

' '( )
x a

y f x
y b

 
    

 
 

 

21 '
''

y
y

y b

 
   

 
 

 
Homework HW-12. The Radius of Curvature. Solve the above equations for the 

radius R  and show that 

2(1 ' )

''

y
R

y




, which is the inverse of our curvature 2 3/2

''

(1 ' )

y
K

y


 . 

 
******************** 

 
Your homework assignment shows us that the curvature matches that of our circle. 

 

2 3/2

'' 1

(1 ' )

y
K

y R
 

  

 

Now you can see why the curvature is defined this way rather than simply ''y . 

 

For a straight line 'y const  and '' 0y  . These results lead to zero curvature and 

a radius of curvature that is infinite. 
 
Homework HW-13. The Radius of Curvature for an Ellipse. The equation of an 

ellipse with semi-major axis a  and semi-minor axis b  is 

2 2

1
x y

a b

   
    

   
. Show 
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that the curvature 2 2 2 3/2( )

ab
K

a x


 , where 

2
2

2
1

b

a
   . The parameter   is 

known as the eccentricity. Note that for a circle, 0   as a b  and 

2 2

2 2 2 3/2 2 3/2 3

1

( ) ( )

ab R R
K

a x R R R
   

 . 

 
******************** 

 

GR2-4. The Curvature of a Surface. Due to the symmetry found in problems of 

interest to us, we will consider surfaces of revolution. 
 
We choose the z-axis as the axis of 
revolution. The Cartesian coordinates 
(x,y,z)  expressed in terms of cylindrical 

coordinates (,,z) are 
 

cosx    

 

siny    

 

( )z f  . 

 

We can call the function ( )f   the profile curve for the surface. This profile is clearly 

visible in the z-y plane where 90   and y  . 

 
 The square of the differential line element in cylindrical coordinates is 
 

2 2 2 2 2ds d d dz     . 

 

On the surface ( )z f   and 

( )
'

df
dz d f d

d


 


 

, which leads to  

 
2 2 2 2 2(1 ' )ds f d d     . 

 
This square of the line element on the surface is called the first fundamental form of the 
surface. 
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 A visualization of the first fundamental of the surface, 
 

2 2 2 2 2(1 ' )ds f d d      

 

 is illustrated by the figure below. Note that ds  is the red segment in the figure. 

 
You can notice the similarity 
when we wrote earlier for a curve 
in a plane 
 

2(1 ' )ds y dx  . 

 
We see a piece like that in the 
form 
 

2(1 ' )f d  

 
along the surface. 
 

 The infinitesimal length along the profile curve is 
2(1 ' )f d  and the 

infinitesimal d   is simply the arc swept out by a radius   moving through an angle 

d . The area of the patch is given by 

 

2(1 ' )dA f d d    . 

 
Homework HW-14. Surface Areas. Find the surface areas for the following surfaces. 
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 We have a definition for curvature for a one-dimensional curve: 

2 3/2

'' 1

(1 ' )

y
K

y R
 

 . We need to extend this definition to a curvature for a 

surface. 
Think of our two-dimensional 
surface as having two 
perpendicular curvatures: 
 
1. the curvature for the profile: 
 

1 2 3/2

1

'' 1

(1 ' )

f
K

f R
 

  

 
We dropped the absolute 
value sign to allow for positive 
and negative curvature – 
which we want for surfaces. 
 
2.  the curvature due to the 
revolution. We will call this 

curvature 2K . 

We need to find the radius of curvature 2R  for the revolution. This radius must 

be perpendicular to the profile curve (to be fully independent of 1R ) and swing into the 

page. Think of curving along the profile curve for 1K  and curving into the page for 2K . 

The two infinitesimal sweep segments are perpendicular to each other. 

From the figure: 2
cos

R





. As this hypotenuse swings around the z-axis, it traces 

out a cone. The curvature 2K  is the reciprocal: 

 

2

cos
K






. 

Since 90   , 2
2 2

sin 1 1 1

1 ' 1 '

f df
K

df f



   


  

  
. 

 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License 

 

  
The two curvatures are 

1 2 3/2

1

'' 1

(1 ' )

f
K

f R
 

    and   2
2

2

1 ' 1

1 '

f
K

Rf
 


. 

 
We will define the curvature for the surface as the product: 

1 2 2 3/2 2
1 2

1 '' 1 '

(1 ' ) 1 '

f f
K K K

R R f f
  

 
, which 

simplifies to 

2 2

' ''

(1 ' )

f f
K

f


 . 

 
This curvature is also known as the Gaussian curvature. 
 
Homework HW-15. Gaussian Curvature for a Sphere. Show that the Gaussian 

curvature for a sphere with radius R  is 2

1

R
. 

 
Homework HW-16. Gaussian Curvature for a Hyperboloid. Show that the Gaussian 
curvature for a hyperboloid of revolution with boundary profile 

2 2

1
z

a b

   
    

   
 equals 

2 4

2
2 2 2 4( )

b a
K

a b a
 

   
. 

The curvature is negative because the surface curves outward like a wine glass. 
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GR2-5. The Metric Tensor. The first fundamental form gives us a way of 

calculating the lengths of paths on a surface. The information contained in the form can 
be summarized by listing the coefficients of the coordinate infinitesimals. As an 
example, consider our two-dimensional surface of revolution. 
 

2 2 2 2 2(1 ' )ds f d d      

 
The form is quadratic and it is sometimes referred to as the fundamental quadratic form 

of space. If we let 
2

11 (1 ' )g f   and 
2

22g  , we can write 

 
2 2 2

11 22ds g d g d   . 

 

 The coefficients 11g  and 22g , which refer to the first coordinate   and second 

coordinate   respectively, can be placed in a matrix of the form 

 

11 12

21 22

i j

g g
g

g g

 
  
 

, 

 

where i  refers to the row and j  the column. The entries 12g  and 21g  are 

coefficients for possible terms d d   and d d  . These do not appear in our 

specific case of surfaces of revolution. Therefore, 12 21 0g g  . The matrix is called 

the metric tensor. For our surfaces of revolution, the metric tensor is 
 

2

2

1 ' 0

0
i j

f
g



 
  
 

. 

 
Homework HW-17. Gaussian Curvature and Metric for Surfaces of Revolution. 
Show that for surfaces of revolution, 
 

11

2

11

1

2

dg
K

g d 


. 
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The components of the tensor, i.e., the entries in the matrix, are dependent on 
the coordinates chosen to describe the surface. However, the Gaussian curvature is 
independent of the choice of coordinates and is a measure of the intrinsic curvature of 

the surface. Similarly, 
2ds  is also independent of the choice of coordinates and gives 

the intrinsic infinitesimal distance along the space. In three dimensions, two examples 
are Cartesian and spherical coordinates: 

 
2 2 2 2 2 2 2 2 2 2sinds dx dy dz dr r d r d        . 

 Now we demonstrate that ijg  is indeed a tensor and a covariant one at that, 

which will justify our use of subscripts rather than superscripts. In general, the square of 
the line element, allowing for possible cross terms, is 
 

2 i j

i jds g dx dx , 

 
where the Einstein summation convention is assumed. The invariance of the square of 
the line element is another way of saying that it does not matter what coordinate system 
you use. For a primed and unprimed set of coordinates we have 
 

2 ' ' 'i j k l

i j klds g dx dx g dx dx  . 

 
Note the use of different summation letters on the right. This prevents confusion as 
these indices are summed over independently on each side. Each index goes from 1 to 
3 in a three-dimensional space. 
 

 Using the chain rule, ' ' ' ' '
' '

i j
k l k l

i j klk l

dx dx
g dx dx g dx dx

dx dx
  

 
We next bring everything to the right side and factor out the common pieces. 
 

' ' ' 0
' '

i j
k l

kl i j k l

dx dx
g g dx dx

dx dx

 
  

 
 

 
Since the differentials are arbitrary as we can pick different paths in general, 
 

'
' '

i j

kl i jk l

dx dx
g g

dx dx
 . 
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This result is the transformation of a covariant tensor of Rank 2. It is also symmetric. 
 

Cartesian Coordinates ( , , )x y z . The Cartesian metric is given below. 

 

1 0 0

0 1 0

0 0 1

i j i jg 

 
 

 
 
  

 

 
Leopold Kronecker (1823-1891)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 

The Kronecker Delta symbol is defined as 

 

and named after the German mathematician Leopold 

Kronecker. It is a symmetric symbol. 

Cylindrical Coordinates ( , , )z  . The metric for Cylindrical Coordinates . 

2

1 0 0

0 0

0 0 1

i jg 

 
 


 
  

 

Spherical Coordinates ( , , )r   . The metric for Spherical Coordinates . 

2

2 2

1 0 0

0 0

0 0 sin

i jg r

r 

 
 


 
  
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GR2-6. Raising and Lowering Indices. Watch this trick. Take a contravariant 

vector 
iA . The contravariant transformation is 

'
'

i
i j

j

x
A A

x





. Now construct in a 

primed frame, 

'( ) ' 'ikiA k g A , 

 
where we put the k index in parenthesis because we do not know at this point where is 
should go (subscript or superscript). Substitute 
 

'
'

i
i j

j

x
A A

x





 and '
' '

n m

ki nmk i

x x
g g

x x

 

 

  into the above equation to get 

 
 

'
'( )

' '

n m i
j

nmk i j

x x x
A k g A

x x x

  

  

. 

 
Regroup the factors to obtain 
 

'
'( )

' '

n m i
j

nmk i j

x x x
A k g A

x x x

   
  
   

. 

 
The bracketed part reduces to 
 

'

'

m i m

mji j j

x x x

x x x


  
 

  
 

 
using the chain rule and the fact that the coordinates are independent of each other. 
Think of these relations at play here: 
 

1
x

x





, 

0
x

y




 , 0
x

z





 and so on. 
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Then 

'
'( )

' ' ' '

n m i n n
j j j

nm mj nm njk i j k k

x x x x x
A k g A g A g A

x x x x x


     
   
     

. 

Since '( ) ( )
' '

n n
j

njk k

x x
A k g A A n

x x

 
 
 

, we see that the A entity transforms as a 

covariant vector. So we should write a subscript for the A components. 
 

'
'

n

k nk

x
A A

x





. 

 
We constructed a covariant vector from a contravariant one using the metric tensor. 
 

j

i i jA g A  

 
We call this procedure lowering an index. What about raising an index? 

 

 Let 
1

i jg
 be the inverse of ijg  so  

1

i j jl ilg g   . Note the sum over j as 

this is the rule for multiplying matrices. Then, 
 

1 1 j j k

ki i ki i j kjg A g g A A A    . 

 
We have raised the index, i.e., transformed a covariant vector into its contravariant 
counterpart. 
 
Homework HW-18. Obtaining a Covariant Tensor of Rank 2. Prove that 
 

mn

i j im jnA g g A  is a covariant tensor of Rank 2. 

GR2-7. The Contravariant Metric Tensor. We will now show that 
1

ijg 
 is a 

contravariant tensor. Start with 
 

'
'

l
l k

k

x
A A

x





, 
1' ' 'l

l j jA g A , and 
1k

ki iA g A . 

 

Then 

'
'

l
l k

k

x
A A

x





 with the above substitutions for 'lA  and 
kA  becomes 
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1 1'

' '
l

l j j ki ik

x
g A g A

x

 



. 

Now substitute 

'
'

j

i ji

x
A A

x





  to get 
1 1' '

' ' '
l j

lj j ki jk i

x x
g A g A

x x

  

 

. 

  
Bringing everything to one side 
 

1 1' '
' ' 0

l j

l j ki jk i

x x
g g A

x x

   
  
  

. 

 
Since the vector components are arbitrary, i.e., the equation must be true for all vector 
components, the term inside the brackets must vanish. You just can’t count on the A’ 
components to conspire to get 0. That would be a chance occurrence. 
 
 We come to 

1 1' '
' 0

l j

l j kik i

x x
g g

x x

  
 
 

 

 

1 1' '
' 0

l j

l j kik i

x x
g g

x x

  
 
 

 

 

1 1' '
'

l j

l j kik i

x x
g g

x x

  

 

 

 
 

The last equation indicates that the inverse g transforms as a contravariant tensor of 
Rank 2. Therefore, we can write 
 

1 l j

l jg g     and   

' '
'

l j
l j k i

k i

x x
g g

x x

 

 

. 

 
 

We have the contravariant metric tensor. It is the inverse of the covariant metric tensor. 
For Cartesian coordinates, everything is super simple: 
 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License 

 

1 0 0

0 1 0

0 0 1

i j i jg 

 
 

 
 
  

   and   

1 0 0

0 1 0

0 0 1

i j

i jg 

 
 

 
 
  

. 

 
Homework HW-19. Contravariant Metric Tensor for Spherical Coordinates. Show 
by explicit calculation of 

' 'i j
i j kl

k l

x x
g

x x


 

 

, where 

kl  refers to the Cartesian coordinates and 
i jg  refers to spherical coordinates, that 

2

2 2

1 0 0

1
0 0

1
0 0

sin

i jg
r

r 

 
 
 
 
 
 
 
 

. 

 
I like to write the g with indices i and j. You can pick any index letters you want. 
 

GR2-8. Contraction. What are invariant quantities, i.e., quantities that are 

independent of which coordinates we choose to use? One example is the square of the 
arc length? 

2 i j

i jds g dx dx  

 
Another example, inspired by the above, is 
 

2 i j

i jA g A A . 

This equation is equivalent to 
 

2 i

iA A A  since 
j

i i jA g A . 

The above formulation is our dot product for a vector 
i

iA A A A  . Note that 

 
2 ' 'i j

i jA A A A A  . The length is invariant. 
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In Cartesian coordinates 
j j i

i i j i jA g A A A   . So we can write 

components as subscripts always in Cartesian systems like you do in physics class. In 
the Cartesian case we find 
 

2 2 2i

i i i x x y y z z x y zA A A A A A A A A A A A A A A         . 

Homework HW-20. Constructing Tensors. Show 
ij i jT A A  is a contravariant 

tensor of Rank 2, given that 
iA  is a contravariant vector. Then form 

j ij

k kiT g T . 

Show that 
j

jT  is an invariant. 

 
 What you did in HW-20 is called contraction – you make a covariant index the 

same as a contravariant one as in 
j

jT . You can make scalar invariants this way. But 

be careful to follow two rules: 
 

1. always pair a covariant index with a contravariant one, 
2. you must pair up all the indices so that you are left with a scalar. 

 

As another example, taking 
ij

nmT  and doing the contraction 
ij

ijT  we wind up with a 

scalar. But 
ii

jjT  is NOT a scalar. We did not pair a contravariant index with a covariant 

one. Note that tensors of odd rank cannot be reduced to scalars because there is 
always an odd-one out that cannot be paired. 

 
Personal Note. When I was an 
undergraduate, I enjoyed the Vector 
Analysis book in the Schaum’s Outline 
Series. But there was no Tensor book 
in the series then. The Tensor Calculus 
book was finally published in 1988 by 
David Kay, who had come to UNC 
Asheville as the Chair of Mathematics 
in the 1980s. At that time I was Chair of 
Physics. Dr. Kay formerly taught in the 
graduate program at the University of 
Oklahoma for 17 years. 
 
Dr. Kay has retired since. He paid us a 

visit in 2011, the year that the revised edition of his book appeared in the Schaum’s 
Outline Series. See him in the above photo with your instructor (2011). 


