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General Relativity 
Prof. Ruiz, UNC Asheville, www.doctorphys.com 
Chapter GR-1 Notes. Vectors and Tensors 
 

GR1-0. Introduction. 

There are lots of fine texts on General Relativity and many resources on the 
Internet. You are encouraged to seek out such supplemental material. The notes you 
find here begin in a very basic way and our discussion is geared to undergraduates. 
 

I developed notes c. 1980 for seniors (Joe Mitchell and Frank Keller) and a 
version with restricted topics for a freshman (Angelo Bencivenga). As we do not have a 
general relativity course at UNC Asheville, two sets of notes were developed specifically 
for students at different levels in their studies. Now, 35 years later, Dylan Cromer has 
made a similar request. Therefore, I am combining both sets of materials from the past 
and I am including more figures for this 2015-2016 edition. I am also expanding the 
notes to include overlapping topics. 

 
Albert Einstein (1879-1955)  
Schweizerische Landesbibliothek 
 

Einstein photo from 1912, three years before 
arriving at General Relativity. 
 

Einstein has always been an inspiration to 
physics students for over a century. The year 2015 
marked the 100th anniversary of the general theory of 
relativity – the year Einstein found his field equations. 
 

I find the quote by Larry Smarr, a physicist and 
super computer expert, an excellent introduction to 
general relativity. His quote is: 

 
“I think Einstein's Theory of Relativity is one of the most beautiful creations of 

human kind. It is both scientific and esthetic at the same time. It's one of the real 
moments in which beauty, in this case the mathematical beauty of equations, led to the 
science being discovered, and in its best form, science and art are indistinguishable.” 
Larry Smarr, http://archive.ncsa.illinois.edu/Cyberia/NumRel/Smarr_2.html 
 

Larry Smarr has used high performance computers to model distortions in 
spacetime by massive objects, including black holes. 
 
http://archive.ncsa.illinois.edu/Cyberia/NumRel/EinsteinEquations.html#expressed 
 

We shall begin. 

http://archive.ncsa.illinois.edu/Cyberia/NumRel/Smarr_2.html
http://archive.ncsa.illinois.edu/Cyberia/NumRel/EinsteinEquations.html#expressed
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GR1-1. Contravariant Vectors. 

The classic approach to general relativity abounds with vectors and tensors, 
which you will learn about. To start things off, an example of a vector is the position 
vector. 

r xi y j z k    

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The differential increment of the position vector is dr dxi dy j dz k   . 

 
The square of the differential length, 

2 2ds dr , is given by the Pythagorean Theorem 

since our unit vectors ( i , j , and k ) are orthogonal. 

 
2 2 2 2ds dx dy dz    

 
The concept of differential distance is extremely 
important in general relativity. 
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Here is a quick review of a derivative. The derivative is given by 
0

lim
x

dy y

dx x





, 

which allows us to write 

dy
dy dx

dx
 . 

This equation states that the 
infinitesimal change in y is given by the 
derivative (of y with respect to x) times 
the infinitesimal change in x. 
 
Watch what happens when we have a 
function f of two variables such that f = 
f(x,y). 

 
The total change in f is then given by a sum where we use partial derivatives 
 

y x

f f f f
df dx dy dx dy

x y x y

     
           

. 

 
Subscripts mean we keep those variables constant, which is understood in the last 
version above. Refer to the following figure for a visualization of this important result. 
 

Courtesy http://chemwiki.ucdavis.edu. Contributor Howard DeVoe, Associate Professor 
Emeritus, University of Maryland, from Thermodynamics and Chemistry. 

http://chemwiki.ucdavis.edu/
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The (x,y,z) coordinates are our Cartesian coordinates. We have other coordinate 
systems like cylindrical and spherical. In general, we can consider coordinates (u,v,w). 
The dictionary that lets us transform from one coordinate system to another consists of 

functions such as ( , , )u u x y z , ( , , )v v x y z , and ( , , )w w x y z . 

 
As an example, the radial 
coordinate in spherical coordi-
nates can be obtained from 
Cartesian coordinates by 
 

2 2 2r x y z   . 

 
For the other two spherical 
coordinates, we have 
 

1tan
y

x
      and     

1

2 2 2
cos

z

x y z
 

 
. 

 

Getting back to ( , , )u u x y z , ( , , )v v x y z , and ( , , )w w x y z , from the 

laws of partial differentiation, we have 
 

u u u
du dx dy dz

x y z

  
  
    

 

v v v
dv dx dy dz

x y z

  
  
    

 

w w w
dw dx dy dz

x y z

  
  
   . 

 
To get some practice with partial derivatives, we consider two dimensions with 

Cartesian ( , )x y  and polar coordinates ( , )r  . 
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We have the transformation 
equations 
 

2 2r x y   

 
and 

 

1tan
y

x
  . 

 
Our former three dimensional equations now reduce to 
 

u u
du dx dy

x y

 
 
     and   

v v
dv dx dy

x y

 
 
   

with ( , ) ( , )u v r  . You will be working with these in your first homework problem. 

 
The square of the differential line 
element in polar coordinates is 
given from the figure as 
 

 
22 2 ( )ds dr r dr d    

 
from the Pythagorean theorem. On 
expanding the second term, we can 
neglect the super small infinitesimal 

pieces 
2 2dr d  and 

22rdrd  

as these contributions go to zero 

much faster than 
2dr  and 

2d . Therefore, we arrive at 

 
2 2 2 2ds dr r d  . 

 
Homework HW-1. Polar Coordinates. Now it’s time to practice. Calculate 
 

r r
dr dx dy

x y

 
 
   
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d dx dy
x y

 


 
 
   

 
and demonstrate with detailed mathematical steps that 
 

2 2 2 2 2dr r d dx dy   . 

 
Note that the square of the line element in Cartesian coordinates is our familiar 
 

2 2 2ds dx dy  . 

 
See the same ds below for a visualization of the above result. 
                                                                                                                                                                                                                                                                                                                                                                   
 
 
 
 
 
 

Let’s define the Cartesian coordinates as 
1 2 3( , , ) ( , , )x y z x x x  and the general 

coordinates ( , , )u v w  as 
1 2 3( , , )q q q . Then, 

 
 

u u u
du dx dy dz

x y z

  
  
    

 

v v v
dv dx dy dz

x y z

  
  
    

 

w w w
dw dx dy dz

x y z

  
  
    

 
can be compactly written as  

3

1

i
i j

j
j

q
dq dx

x





 . 
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The summation sign indicates that we should let the j-index go from 1 to 3 and add the 
three terms on the right. For the case where i = 1, the sum on j gives 
 

1 1 1
1 1 2 3

1 2 3

q q q
dq dx dx dx

x x x

  
  
  

, 

 
which is equivalent to 
 

u u u
du dx dy dz

x y z

  
  
   . 

 
Since summation signs appear so frequently in general relativity, Einstein stopped 
writing them down by 1916. It is understood that we sum over an index appearing twice 
on the right side. This convention is called Einstein’s summation convention. We can 
write 

i
i j

j

q
dq dx

x





    for     

3 i
i j

j
i j

q
dq dx

x





 . 

Vector components that transform like 

i
i j

j

q
dq dx

x





 are said to be contravariant. 

Consider a vector in two reference frames K and K’ with vector A  in the K frame and 

vector 'A  in the K’ frame. The vector is contravariant if its components transform as 
 

'
'

i
i j

j

x
A A

x





. 

 
When you think contravariant, your primed variables and unprimed variables are 
situated along the slant as illustrated below. Note that the components for each frame of 
reference have the same index i or j. Remember that you sum on the double index j on 
the right side. 
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Homework HW-2. Rotational Transformation. Rotating a coordinate system provides 
for another example of a coordinate transformation. We will return to this transformation 
in more detail later. 

 

' cos sinx x y    

 

' cos siny y x    

 

' '
'

x x
dx dx dy

x y

 
 
   

 

' '
'

y y
dy dx dy

x y

 
 
   

 
 

Show that 
2 2 2 2 2 2' ' 'ds dx dy dx dy ds     . 
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GR1-2. Covariant Vectors. 

You may have wondered about our placement of indices as superscripts. We 

defined general coordinates as 
1 2 3( , , )q q q . You have probably encountered 

subscripts for vector components in introductory physics, such as 
 

1 2 3A A i A j A k   , 

rather than 

1 2 3A A i A j A k   . 

 

In a tensor course we have to be very careful here. Whether to use 
iA  or iA  matters. 

It depends how the components transform. In our last section we defined a 
contravariant vector as one whose components transform as below. 

 
Some vectors transform differently according to the transformation equations below. 
 

 
Such vectors are called covariant vectors. Note that you can write the contravariant 
transformation as 

 

'
'

i
i j

j

x
A A

x





 or 

'
'

i
i j

j

x
A A

x





 

 
and the covariant one as 
 

'
'

j

i ji

x
A A

x





 or '
'

j

i j i

x
A A

x





. 
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The differentials 
idx  transform in the contravariant manner as we have seen 

earlier: 

1 2 3

1 2 3

' ' ' '
'

i i i i
i j

j

x x x x
dx dx dx dx dx

x x x x

   
   
   

 

 
Therefore, we write the differentials with superscripts in both cases below. 
 

Contravariant Vector Transformation  Covariant Vector Transformation 
 

 
 
 
 
 
 
 

 
An example of a covariant vector is the gradient. We take the gradient of the 

scalar function ( , , )f x y z  below. This action promotes the scalar ( , , )f x y z  to a 

vector quantity. 

f f f
f i j k

x y z

  
   

    

 
In a rotated coordinate system which we designate with primes, 
 

' ' '
' ' '

f f f
f i j k

x y z

  
   

   . 

 

From the laws of partial derivatives, ' ' ' '

f f x f y f z

x x x y x z x

      
  

       . 

 

Let '
'

i i

f
A

x





 and i i

f
A

x





. 

Then, 
 

'
'

j

i j i

x
A A

x





   or   '

'

j

i ji

x
A A

x





. 
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Our next step is to apply the previous equations in the setting of polar 

coordinates. We use ( , )r   for polar coordinates so that   is reserved for the 

spherical coordinate angle coming down from the z-axis. Note that the spherical 

coordinate r  reduces to the polar coordinate r  when 90   . 

Let 90    in the left 
figure. Then we are 
restricted to the x-y 
plane as z = 0. 
 
In the x-y plane, the 
coordinates reduce to 
the following. 
 

cosx r   

 

siny r   

 

0z   
 

We will also need the transformation for the unit vectors. Convince yourself from the 
figure below that the following transformations hold. 

 

cosx r     siny r   

 

2 2r x y   

1tan
y

x
   

 

cos sinr i j    

 

sin cosi j      

 
Now solve the above two 

equations for i  and j  to arrive at 

 

cos sini r        and     sin cosj r   . 
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We are ready for the homework problem. 
 
Homework HW-3. The Gradient in Polar Coordinates. Consider two coordinate 

frames: 1) Cartesian coordinates ( , )x y  and 2) polar coordinates ( , )r  . 

 
Start with the gradient in Cartesian coordinates. 
 

f f
f i j

x y

 
  

    

Now perform the covariant transformation of the form '
'

j

i j i

x
A A

x





 to arrive at 

 

f f r f

x r x x





    
 

          and     

f f r f

y r y y





    
 

     . 

 
Show that your result is 
 

sin cos
cos sin

f f f f
f i j

r r r r

 
 

 

      
       

      
. 

 
To complete the transformation and get everything in polar coordinates, we need to 
substitute in 
 

cos sini r        and     sin cosj r   . 

 
Do this substitution and show that 
 

1f f
f r

r r




 
  

  . 

 
From the above result, the gradient in polar coordinates can be written as 
 

1
r

r r




 
  

  , 

 
where we are careful to put the unit vectors first since they are not constants. 
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You have essentially, by the way, also derived the gradient in cylindrical 

coordinates since the z-axis is a Cartesian one. In three dimensions, we will use   as 

the cylindrical radial coordinate so as to never be confused with the spherical radial 

coordinate r . Then, the gradient in cylindrical coordinates is 
 

1
k

z
 

  

  
   

   . 

GR1-3. Curvilinear Orthogonal Coordinates. 

From our study of the gradient, you realize that it can take some mathematical 
manipulation to arrive at the gradient in a non-Cartesian coordinate system. We would 
like a shortcut in finding gradients and other things in general orthogonal coordinate 
systems. Note that even though polar coordinates have unit vectors that depend on 
location, the unit vectors are still perpendicular to each other, i.e., orthogonal. This also 
goes for spherical coordinates. We are going to use subscripts for differentials here. 
 
Let’s consider an infinitesimal solid in general curvilinear orthogonal coordinates. Note 
that each differential variable has a factor in front. These "h" factors are called scale 

factors. A familiar example is the arc length in polar coordinates: ds rd . The r  is 

a scale factor. 

Differential Line Element. We use the 
Pythagorean theorem twice for the diagonal of 
the solid. First, for the base, we have for the 
square of the hypotenuse 
 

2 2 2 2

1 1 2 2h dq h dq . 

 
Second, adding to this the square of the height 
gives 
 

2 2 2 2 2 2 2

1 1 2 2 3 3ds h dq h dq h dq   . 

 
 

Differential Volume Element. We can use the “length times width times height” idea to 
arrive at the volume element. 
 

1 1 2 2 3 3 1 2 3 1 2 3( )( )( )dV h dq h dq h dq h h h dq dq dq   

 
Let’s check these out with cylindrical coordinates. We first work things out the long way. 
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Cylindrical Coordinates Differential Line and Volume Elements. Figure from Tony Saad. 

 
For the volume element we 

write dV dAdz , where the dA  

is the area of the base in the figure. 

This is simply dA d d   . But 

if you want to be super careful, use 

the average of the shorter and longer 

arc lengths (see left). As we take the 

limit of the infinitesimal, a product of 

three differentials will vanish faster 

than the product of two. Therefore, we can toss the d d d    term compared to the 

d d   term. The volume element is then 

dV d d dz   . 

The line element for the diagonal of the "cube-like" region is found by using the 

Pythagorean theorem twice: once for the floor 
2 2 2d d    and then the diagonal 

of the floor with the height dz . 

2 2 2 2 2ds d d dz      

 

From d , d  , and dz  in the figure above, we identify for cylindrical coordinates: 

 

1q  , 2q  , 3q z  with 1 1h  , 2h  , 3 1h  . 

 

Using the coordinates and scale factors for cylindrical coordinates we can find dV  and 

2ds  from the master formulas 

 

2 2 2 2 2 2 2

1 1 2 2 3 3ds h dq h dq h dq        and    1 1 2 2 3 3( )( )( )dV h dq h dq h dq  . 

 

With the values for the above h scale factors:  

 
2 2 2 2 2ds d d dz          and     dV d d dz   . 
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Spherical Coordinates Differential Line and Volume Elements. Figure from Tony Saad. 

 
Let’s do the same for spherical 

coordinates. The volume element is 

found using length times width times 

height for the tilted volume element. 

 

( sin )( )dV r d rd dr    

 

We don't even take the average of 

the widths since to first order, the 

differential 

 sin( )r d d    

becomes sinr d  . The volume 

element is usually written as 

2 sindV r drd d   . 

 

The differential line element is the square of the diagonal as before. So we use simple 

square each of the differential sides. 
2 2 2 2 2 2 2sinds dr r d r d      

 

From dr , rd , and sinr d   in the figure above, we identify for spherical 

coordinates: 
 

1q r , 2q  , 3q   with 1 1h  , 2h r , 3 sinh r  . 

 

Using the coordinates and scale factors for spherical coordinates we can confirm dV  

and 
2ds  from the master formulas 

 

2 2 2 2 2 2 2

1 1 2 2 3 3ds h dq h dq h dq             1 1 2 2 3 3( )( )( )dV h dq h dq h dq  

 
2 2 2 2 2 2 2sinds dr r d r d               

2 sindV r drd d    
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As we have seen, the Gradient in Cartesian coordinates is given by 
 

f f f
f i j k

x y z

    
   

   . 

 
We can obtain the gradient in curvilinear coordinates by comparing the differentials. In 
Cartesian coordinates we have these three differentials: 
 

dx , dy , and dz . 

 

In cylindrical coordinates we have: d , d  , and dz . Note that each has 

dimension of length. Our gradient in cylindrical coordinates is then 
 

1f f f
f k

z
 

  

    
   

   . 

 
This is the shortcut. We just write the answer down since we know about scale factors. 

 

In spherical coordinates we have: dr , rd , and sinr d  . Note that each has 

dimension of length. Our gradient in spherical coordinates is then 
 

1 1

sin

f f f
f r

r r r
 

  

    
   

   . 

 

In curvilinear coordinates we have: 1 1h dq , 2 2h dq , and 3 3h dq . Note that each has 

dimension of length. Our gradient in curvilinear coordinates is then 
 

1 2 3

1 1 2 2 3 3

1 1 1f f f
f e e e

h q h q h q

    
   

   . 

 
Caution: If you write the operator by itself, put the unit vectors on the left since 
they are in general functions of the coordinates. 
 

1 2 3

1 1 2 2 3 3

1 1 1
e e e

h q h q h q

    
   

    
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GR1-4. Advanced Vector Analysis – Curvilinear Coordinates. 
 

We will take a detour here to use the curvilinear concept to derive three more 
very important operators in engineering and physics: divergence, curl, and Laplacian. 
But with the power of curvilinear coordinates, we can arrive at the very important above 
operators in a relatively short time. One of the strengths of studying General Relativity is 
the spinoff effect – you learn on the side very important concepts used throughout 
engineering and physics. In this section we introduce some basic definitions first. 
 
The spinoffs in this chapter will give you tremendous strength in theoretical physics. 
Besides the operators, we will also see the general forms for the Divergence Theorem 

and Stoke’s Theorem, again extremely 
important in engineering and physics. 
 
The gradient, divergence, and curl can be 
defined with the del operator 
 

i j k
dx dy dz

  
   

. 

 

The gradient of a scalar f  gives us a 

vector: 

f f f
f i j k

dx dy dz

  
   

 

Homework HW-4. Divergence and Curl. If you have any trouble with this problem, 
go immediately to the Appendix Review at the end of this chapter. 
 

Show that the divergence of a vector x y zE E i E j E k    gives a scalar:  

yx z
EE E

E
x y z

 
   

    from your definition of the dot product with unit vectors. 

 

Show that the curl of a vector x y zB B i B j B k    gives a vector: 

 

( ) ( ) ( )
y yx xz z

B BB BB B
B i j k

y z z x x y

     
      

      , 

 
from you definitions of the cross product with unit vectors. 
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GR1-5. The Divergence Theorem. Here is a simplified derivation of the 

divergence theorem in Cartesian coordinates. 

We are interested in calculating the flux 
through the enclosed surface, which we 
write as 

E dA . 

 

( , , )bottom zE E x y z      and its 

counterpart     ( , , )top zE E x y z z  . 

 
The net flux out of the surface of our cube 
is given by multiplying the magnitude of the 
perpendicular vector component that 
pierces each surface. Here we have top 
and bottom. We subtract what goes in from 
what goes out. 

 

( , , ) ( , , )z zE dA E x y z z x y E x y z x y         

 

( , , ) ( , , )z zE x y z z E x y z
E dA x y z

z

 
    

  

 

zE
E dA dxdydz

z


 

     Note left surface integral and right volume integral. 

 

yx z
EE E

E dA dxdydz
x y z

  
    

   
   

 

The Divergence Theorem:     E dA E dxdydz   
    

Homework HW-5. Show that starting with ( , , )
2 2

bottom z

x y
E E x y z

 
    and its 

appropriate counterpart that you get the same result. You will find that taking limits as 
the extra deltas go to zero do not lead to any derivatives. They just go away. 
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Now we are going to derive the divergence theorem in general for curvilinear orthogonal 

coordinates. We consider 1 2 3( , , ) ( , , )q q q u v w  with scale factors 

( , , ).u v wh h h  It is easier to work without subscripts for the coordinates. 

 
Remember that the h scale 
factors can be functions of the 
coordinates 

 

( , , )w wh h u v w . 

 
We will take a simplified vector 
field such that 

( , , ) wwE u v w E e


 . 

 
Flux is defined as the product of 
the magnitude of the vector 

component piercing an area times that area. The net flux is what goes out minus what 
comes in. The only relevant areas for the volume element are the top and bottom. 
 

( , , )bottom wwE E u v w e


  

( , , )top wwE E u v w w e


   

 

  ( , , ) ( , , )bottom u vdA h u v w u h u v w v    

 

  ( , , ) ( , , )top u vdA h u v w w u h u v w w v      

 

Therefore, E dA   

  ( , , ) ( , , ) ( , , )w u vE u v w w h u v w w u h u v w w v      

  ( , , ) ( , , ) ( , , )w u vE u v w h u v w u h u v w v    

( ) ( )w u v w u vw w w
E dA E h h E h h u v


        
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( ) ( )w u v w u vw w w
E h h E h h

E dA u v w
w


  

     
 

  

( )w u vE h h
E dA u v w

w


    

  

Now we want the differential volume element 

( )( )( )u v w u v wdV h u h v h w h h h u v w          in there. 

 

( )1 w u v
u v w

u v w

E h h
E dA h h h u v w

h h h w


    

  

Now it's time to put the q-variables back in. 

3 1 2
1 2 3 1 2 3

1 2 3

( )1 E h h
E dA h h h q q q

h h h w


    

  

3 1 2

1 2 3 3

( )1 E h h
E dA dV

h h h q


 

   

 
From this we can generalize to the general form of the divergence. 
 

1 2 3 2 1 3 3 1 2

1 2 3 1 2 3

( ) ( ) ( )1 E h h E h h E h h
E

h h h q q q

   
    

   
 

 
Homework HW-6. Show that the divergence in curvilinear coordinates reduces to the 
following in Cartesian, cylindrical, and spherical coordinates. 
 

Cartesian: 

yx z
AA A

A
x y z

 
   

    

Cylindrical: 

( )1 1 z
A A A

A
z

 

   

  
   

    

Spherical: 

2

2

(sin )( )1 1 1

sin sin

r
AAr A

A
r r r r



   


   

    
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GR1-6. Stoke’s Theorem. Here we consider a vector field B and proceed to do a 

closed line integral of this field. 

B dl . 

To simplify, we will pick the field to be in the x-y plane. 

 

We obtain B dl   

 

( , , ) ( , , ) ( , , ) ( , , )x y x yB x y z x B x x y z y B x y y z x B x y z y         , i.e., 

 

( , , ) ( , , ) ( , , ) ( , , )y y x x
B x x y z B x y z B x y y z B x y z

x y x y
x y

   
    

 
. 

 
Homework HW-7. Complete the derivation of Stoke’s Theorem. 

 

( )
A

B dl B dA         Note left line integral and right surface integral. 

We can extend this to curvilinear coordinates (u,v,w) with scale factors (hu,hv,hw). 
 

   ( , , ) ( , , ) ( , , ) ( , , )v v v vu u u
B u v w h u v w B u v w h u v w

B dl u v
u




   
  

 

   ( , , ) ( , , ) ( , , ) ( , , )u u u uv v v
B u v w h u v w B u v w h u v w

u v
v




  


 

 

( ) ( )1 v v u u
w

u v A

B h B h
B dl dA

h h u v

  
     

   
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Introducing the q-variables 1 2 3( , , ) ( , , )q q q u v w  with 1 2 3( , , ).h h h  

 

2 2 1 1
3

1 2 1 2

( ) ( )1

A

B h B h
B dl dA

h h q q

  
   

  
   

 
The third component of the cross product defined as 

 

2 2 1 1
3

1 2 1 2

( ) ( )1
( )

B h B h
B

h h q q

  
   

  
. 

 
leads to Stoke's Theorem in curvilinear coordinates. 

 

( )
A

B dl B dA      

Our cross product 
2 2 1 1

3

1 2 1 2

( ) ( )1 B h B h
B e

h h q q

  
   

  
 is better written as 

 

2 2 1 1
33

1 2 3 1 2

( ) ( )1 B h B h
B h e

h h h q q

  
   

  
 

 
Then we can use the following determinant to express this. 
 

1 2 31 2 3

1 2 3 1 2 3

1 1 2 2 3 3

1

h e h e h e

B
h h h q q q

h B h B h B

  

  
 

    

 
Conceptual Summary: The Divergence Theorem equates an enclosed vector-piercing 
surface integral with the divergence of the vector integrated over the enclosed volume. 
Stoke’s Theorem equates a vector-projected-on-a-line loop integral with the 
perpendicular component of the curl of that vector integrated over the surface enclosed 
by the loop. 
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GR1-7. The Laplacian. We find the Laplacian of a function, i.e., 
2 f , by applying 

the divergence to the gradient of a function: 
2 ( )f f   . We start with our 

previous result for the gradient 
 

1 2 3

1 1 2 2 3 3

1 1 1f f f
f e e e

h q h q h q

    
   

   . 

 
and then use our previous result for the divergence 
 

1 2 3 2 1 3 3 1 2

1 2 3 1 2 3

( ) ( ) ( )1 Ah h A h h A h h
A

h h h q q q

   
    

   
, 

 

where A f . So we substitute 

 

1

1 1

1 f
A

h q




 , 2

2 2

1 f
A

h q




 , and 3

3 3

1 f
A

h q




 . 

 

We obtain for 
2 f  the following. 

 

2 3 1 3 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 1 1 1
( ) ( ) ( )

f f f
h h h h h h

h h h q h q q h q q h q

      
  

      
 

 

This simplifies to 

 

2 2 3 1 3 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1
( ) ( ) ( )
h h h h h hf f f

f
h h h q h q q h q q h q

      
    

      
. 
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Homework HW-8. Show that our Laplacian in curvilinear coordinates, which is 
 

2 2 3 1 3 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1
( ) ( ) ( )
h h h h h h

h h h q h q q h q q h q

      
    

      
, 

 
reduces to the following in Cartesian, cylindrical, and spherical coordinates. 
 

Cartesian: 

2 2 2
2

2 2 2x y z

  
   

    

Cylindrical: 

2 2
2

2 2 2

1 1
( )

z


    

   
   

     

 

Spherical: 

2
2 2

2 2 2 2 2

1 1 1
( ) (sin )

sin sin
r

r r r r r


    

    
   

      

 

Many years ago Mr. Samuel S. Ensor, my Calculus 
teacher at St. Joseph's College (SJ) in Philadelphia (now 
University) gave us a project in Calculus III that was long, 
but very useful and productive (Spring 1969). It is given 
below. Everyone aspiring to be a physicist or engineer 
should do this calculation once sometime in their studies. 
It will correct any rough edges you have in taking partial 
derivatives and using the chain rule. 

 

Recommended Problem. Derive the Laplacian in 
spherical coordinates the long way! Start with 
 

sin cosx r   , sin siny r   , cosz r    

and you want 

2 2 2
2

2 2 2x y z

  
   

   . 

So you start cranking: 

r

x x r x x

 

 

      
  

        and so on. Have fun! 

 

Photo Courtesy Ancestry.com, scan from the Greatonion, SJ 1953 Yearbook. 
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GR1-8. Tensors.  
 
Tensor of Rank 0. The Rank 0 case is your scalar. A single number is all you need. 
There is no directional vector or anything like that. The length of a vector stripped of its 
direction is a scalar. Another example is temperature at each point in a room: T = 
T(x,y,z) or you can add the time variable so the temperatures change in time. Below is a 
snapshot of the temperatures across the United States. 
 

 

Courtesy The Weather Channel 

 

Tensor of Rank 1. This case is your vector. It has magnitude and direction. It can also 
be a function of the spatial coordinates as well as time. We have already seen the basic 
classifications of vectors according to their transformation properties. 

 

Contravariant Vector 
iA                         Covariant Vector iA  
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Courtesy Weather Underground, Inc. 

 

Wind velocity has magnitude (the speed) and direction. The length of the vector arrows 
indicate the magnitude of the velocity and the arrow points in the direction of the wind. 
Technically, speed is a scalar, the magnitude. When you promote speed to a vector you 
add the direction. However, often velocity is used informally for just speed. 

 
Charge Image Courtesy Tony Wayne 
 
Here is a vector field produced by a plus charge. 
Note the symmetry as all vectors points outward 
away from the positive charge. Also note that the 
lengths of the vectors decrease as you get farther 
away from the charge. The strength weakens 
according to the inverse square law. In contrast to 
the weather case, this field has a simple formula. 
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Tensor of Rank 2. Among friends, you can think of a tensor of rank 2 as needing 3 x 3 
= 9 components, in three-dimensional space. 
 

 Courtesy Sanpaz, Wikipedia 
 
The stress tensor is an example. 
We need to consider the force 
on each of the three main faces 
defined by the three unit vectors. 
On each surface there is a 
normal force and two shear 
(sideway) forces. 
 
We need not consider all 6 faces 
since mechanical equilibrium 
guarantees that there will be 
opposing forces and torques on 
the opposite sides. 
 
We need 9 quantities to define 
the stress. 
 

 
Matrix notation will assist us here. For the tensors of Rank 0, 1, and 2 respectively, we 
can write for three dimensional space. 
 

 s T T    

x

y

z

A

A A

A

 
 


 
  

  

11 12 13

21 22 23

31 32 33

ij

  

   

  

 
 


 
  

 

 
For two dimensions we have for tensors of Rank 0, 1, and 2 respectively listed below. 
 

 s T T    

x

y

A
A

A

 
  
 

  

11 12

21 22

ij

M M
M

M M

 
  
 

 

 
But not all matrices are tensors. There are transformation properties that need to be 
satisfied. However, if you need vector components as in the stress analysis, then you 
are on good grounds that you are probably dealing with a tensor. 
 
The transformation properties of tensors involved partial derivatives. 
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We know that a contravariant vector 
iA  transforms as 

 

'
'

i
i j

j

x
A A

dx


 . 

 
This vector is a contravariant tensor of Rank 1. A contravariant tensor of Rank 2 
transforms with two partial derivatives in place. 
 

' '
'

i j
ij mn

m n

x x
T T

x x

 

 

 

 
Similarly, a covariant vector transforms as 
 

'
'

j

i ji

x
A A

x





 

 
and a covariant tensor of Rank 2 transforms like 
 

'
' '

m n

ij mni j

x x
T T

x x

 

 

. 

 
You can also have mixed types. Below is the transformation property for a tensor of 
Rank 3 with two covariant indices and one contravariant index. 
 

'
'

' '

m n k
k p

ij mni j p

x x x
S S

x x x

  

  

 

Homework HW-9. Give the transformation for 
i

jklR , a mixed tensor of Rank 4. 
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Appendix 

A0. Why Derive Everything? 

Both special and general relativity start 
with an elegant foundation and everything is 
derived from these first principles. When I started 
my study of general relativity as an 
undergraduate, I liked how the theory is 
developed from Einstein’s core ideas. Einstein is 
pictured at the far left (Princeton, 1947). 
 

Later in graduate school I was fortunate to 
work under Dr. Y. S. Kim (right of Einstein) who 
formulated a quark model using relativistic 

harmonic oscillators. Every calculation could be done from scratch and I could even 
derive all the integral-table results I had to use. 
 

I have always felt it important to derive everything from scratch. I was pleased to 
learn that Feynman had a similar attitude. See his blackboard below at the time of his 
death. 

      Richard Feynman 

 
If Feynman couldn’t derive it, he felt he did not understand it. So in this course, we aim 
to derive everything, starting with some trig derivations as a review of your calculus 
courses. 
 

Note that you should have one year of calculus and one year of calculus-based 
physics as prerequisites to follow our course in general relativity. 
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A-1. Vector Review. 
 
Figure Courtesy OpenStax College. Vector Addition 
and Subtraction: Analytical Methods, Connexions Website. 
http://cnx.org/content/m42128/1.10/, June 20, 2012. 

 

x yA A i A j
  

   

 

x xA A i
 

   and  y yA A j
 

  

 

A-2. Vector Addition and Subtraction. 
Figures Courtesy OpenStax College 

x yA A i A j
 

   

x yB B i B j
 

   

( ) ( )x x y yR A B i A B j
 

     

The Resultant: ( ) ( )x x y y x yR A B A B i A B j R i R j
   

         

Adding the Negative Vector (Subtraction): ( ) ( )x x y yA B A B i A B j
 

      
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Image Courtesy Acdx, Wikipedia 

Examples of vectors in three dimensions. 

 

x y za a i a j a k
  

    

 

x y zA A i A j A k
  

    

 

x y zF F i F j F k
   

    

 
 
A-3. Scalar Multiplication. 
 

( )x y zA A i A j A k 
  

    

x y zA A i A j A k   
  

    

A-4. Dot Product. 
 

Image from Wikimedia Commons 
 

cosA B AB    

Note: (1)(1)cos0 1i i j j k k
     

         

(1)(1)cos90 0i j i k j k
     

         

Also note 

cos cosB A BA AB A B 
 

     . 
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Using the rules for the dot product of the unit vectors we arrive at the following. 

( ) ( )x y z x y zA B A i A j A k B i B j B k
     

        

x x x y x zA B A B i i A B i j A B i k
     

        

y x y y y zA B j i A B j j A B j k
     

       

z x z y z zA B k i A B k j A B k k
     

       

x x y y z zA B A B A B A B     

More notation: 1e i
 

 , 2e j
 

 , and 3e k
 

 . Then 1 1 2 2 3 3A A e A e A e
  

   . 

The unit vectors are also called basis vectors and we use subscripts that can take on 
values 1, 2, and 3. The dot product of two arbitrary unit vectors can then be written as 

i j ije e 
 

   where 1ij   if i j  and 0ij   if i j . 

Here is a summation notation: 

3

1

i i

i

A A e




  and 

3

1

i i

i

B B e




  

3 3 3 3 3 3 3

1 1 1 1 1 1 1

i i j j i j i j i j ij i i

i j i j i j i

A B A e B e A B e e A B A B
   

      

            

x x y y z zA B A B A B A B     or 1 1 2 2 3 3A B A B A B A B
 

     

Einstein Summation Convention: i iA A e


  and i iB B e


  
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i i j j i j i j i j ij i iA B A e B e AB e e AB AB
   

        

Leopold Kronecker (1823-1891)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 

The Kronecker Delta symbol is defined as 

 

and named after the German mathematician Leopold 

Kronecker. It is a symmetric symbol. 

HWA-1 Angle Between Two Vectors Method 1. Find the angle theta between the two 
vectors using the two dot product definitions. Check your answer with a graphical 
diagram. 

A i j
 

   and B i j
 

  . 

 

A-5. Cross Product. 
 
Cross Product (Images Courtesy Acdx, Wikipedia)  
 

sinA B AB n


   , sina b ab n


   

where the unit vector n


 is perpendicular to the 

plane formed by a  and b , according to the right-
hand rule as shown in the lower figure. 
 

 
Or you can use the "right-hand screwdriver rule" where you get 
under the plane and apply the screwdriver to turn "a" into "b" 

advancing along "n". By the way ab sin is the area shown in 
the parallelogram. 
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Image Courtesy Acdx, Wikipedia 

Note that if you flip the order of the vectors, you get a vector in 

the opposite direction according to the right-hand rule. 

sin ( )b a ba n


    

b a a b       and   B A A B     

 

The right hand-rule with the unit vectors gives us these relations below. 

 

Image Courtesy Acdx, Wikipedia 

i j k
  

         j i k
  

          0i i
 

   

j k i
  

           k j i
  

          0j j
 

   

k i j
  

           i k j
  

          0k k
 

   

We now apply these rules. 

( ) ( )x y z x y zA B A i A j A k B i B j B k
     

        works out to: 

x x x y x zA B A B i i A B i j A B i k
     

        

 y x y y y zA B j i A B j j A B j k
     

       

 z x z y z zA B k i A B k j A B k k
     

       

0 ( )x x x y x zA B A B A B k A B j
 

       

 ( ) 0y x y y y zA B k A B A B i
 

      

 ( ) 0z x z y z zA B j A B i A B
 

      
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( ) ( ) ( )y z z y z x x z x y y xA B A B A B i A B A B j A B A B k
  

        

x y z

x y z

i j k

A B A A A

B B B

  

 
     

 ( ) ( ) ( )y z z y x z z x x y y xi A B A B j A B A B k A B A B
  

       

We now switch to our index notation. where 1e i
 

 , 2e j
 

 , and 3e k
 

 . 

The cross-product rules can be summarized by writing 

i j ijk ke e e
  

   where 

 

Tullio Levi-Civita (1873-1941)  
Courtesy School of Mathematics and Statistics 
University of St. Andrews, Scotland 
 

The symbol ijk  is called the Levi-Civita or permutation 

symbol. It is an antisymmetric symbol. If you swap any 
two indices you introduce a minus sign. If any two indices 
are the same you get zero. 
 

3 3 3 3

1 1 1 1

i i j j i j i j

i j i j

A B A e B e A B e e
   

   

        

3 3

1 1

i j ijk k

i j

A B A B e


 

   
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The same with Einstein's summation convention is: 
 

i i j j i j ijk kA B A e B e A B e
  

     

 

HWA-2. Angle Between Vectors Method 2. Find the angle theta between the two 
vectors using the two cross product definitions. Check your answer against HWA-1. 
 

A i j
 

   and B i j
 

  . 

 
A-6. Basic Trig Derivatives 

HWA-3. Derivatives of tan x and cot x. Use the equations 
 

sin
tan

cos

x
x

x


, 

cos
cot

sin

x
x

x


, 

1
sec

cos
x

x


, 

1
csc

sin
x

x


, 

 

sin
cos

d x
x

dx


,  

cos
sin

d x
x

dx
 

, 

 

and the product rule 

( )d fg df dg
g f

dx dx dx
 

 where  sinf x , 

1

cos
g

x


 

for the tangent case and cosf x , 

1

sin
g

x


 for the cotangent case, to show 

that 

2tan
sec

d x
x

dx


   and   

2cot
csc

d x
x

dx
 

. 
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A-7. Basic Derivatives of Inverse Trig Functions. 

We will take the derivative of the inverse sine function first. Start with  
 

1sin arcsinx x   . 

 
Then, we can write 

sin x   and 
sin 1

d

dx
 

. 

 

But 
sin

d

dx


 also equals 

sind d

d dx

 

 . Therefore, 

 

sin
1 sin cos

d d d d

dx d dx dx

  
 


  

, i.e., 

cos 1
d

dx


 

. 

 

Substituting 
1sin arcsinx x   , 

 

1sin 1

cos

d x

dx 




. 

 
The trick now is to get the right side in terms of x. The triangle below paves the way. 

 

sin x   

2cos 1 x    

 
1

2

sin 1

1

d x

dx x





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HWA-4 Derivative of Inverse Sine.  Consider the more general form 
1sin ( / )x a

. 

 

Show that 

1

2 2

sin ( / ) 1d x a

dx a x






. 

 

Hint: let /u x a  and use 

df df du

dx du dx


. 

 

HWA-5 Derivative of Inverse Cosine.  Start with cos x   and show that  

1

2

cos 1

1

d x

dx x

 



   and then   

1

2 2

cos ( / ) 1d x a

dx a x

 



. 

 

HWA-6 Derivative of Inverse Tangent.  Start with tan x   and the associated 
triangle below. 
 

Show that 
 

1

2

tan 1

1

d x

dx x




 . 

 
 

Then show that 
 

1

2 2

tan ( / )d x a a

dx a x




 . 

Concluding Remarks. So now you have derived the derivatives you used in earlier 
homework. If you like deriving everything, you have an affinity for theoretical physics. 
Feynman once said that a good theoretical physicist could derive anything more than 
one way. I think he said five ways or maybe it was even more. We will not go that far 
and be happy with one derivation for the most part. 


